Your answer to the first one is incorrect.
We can cut the plan into two figures, a rectangle with side lengths of 4 cm and 5 cm and a rectangle with side lengths of 1 and 2 cm.
Perimeter of a Rectangle:
P = 2(l + w)
P = 2(4 + 5)
P = 2(9)
P = 18
Perimeter of a Rectangle:
P = 2(l + w)
P = 2(2 + 1)
P = 2(3)
P = 6
Add up the perimeters:
18 + 6 = 24
So the total perimeter is 24.
For the 2nd one, your answer is also incorrect.
We multiply 5 to the perimeter of the plans:
5 * 24 = 120
Not sure what the third one is asking.
For the fourth one we just multiply 'k' to the perimeter:
24 * k = 24k
Answer:
3/8 & 4/8
Step-by-step explanation:
1/2 - 1/8 = 4/8 - 1/8 = 3/8
x - 1/8 = 3/8
x = 4/8
This is the concept of algebra, to solve the expression we proceed as follows;
cos 2x-cosx=0
cos 2x=cosx
but:
cos 2x+1=2(cos^2x)
thereore;
from:
cos 2x=cos x
adding 1 on both sides we get:
cos 2x+1=cos x+1
2(cos^2x)=cosx+1
suppose;
cos x=a
thus;
2a^2=a+1
a^2-1/2a-1/2=0
solving the above quadratic we get:
a=-0.5 and a=1
when a=-0.5
cosx=-0.5
x=120=2/3π
when x=1
cos x=1
x=0
the answer is:
x=0 or x=2/3π
Answer: $24
Step-by-step explanation: