Answer:
Step-by-step explanation:
A suitable table or calculator is needed.
One standard deviation from the mean includes 68.27% of the total, so the number of bottles in the range 20 ± 0.16 ounces will be ...
0.6827·26,000 = 17,750 . . . . . within 20 ± 0.16
__
The number below 1.5 standard deviations below the mean is about 6.68%, so for the given sample size is expected to be ...
0.66799·26,000 = 1737 . . . . . below 19.76
_____
<em>Comment on the first number</em>
The "empirical rule" tells you that 68% of the population is within 1 standard deviation (0.16 ounces) of the mean. When the number involved is expected to be expressed to 5 significant digits, your probability value needs better accuracy than that. To 6 digits, the value is 0.682689, which gives the same "rounded to the nearest integer" value as the one shown above.
Answer:
Step-by-step explanation:
7/15
and/or
0.46 reapeted 6
Answer:
The expected value of the safe bet equal $0
Step-by-step explanation:
If
is a finite numeric sample space and
for k=1, 2,..., n
is its probability distribution, then the expected value of the distribution is defined as
What is the expected value of the safe bet?
In the safe bet we have only two possible outcomes: head or tail. Woodrow wins $100 with head and “wins” $-100 with tail So the sample space of incomes in one bet is
S = {100,-100}
Since the coin is supposed to be fair,
P(X=100)=0.5
P(X=-100)=0.5
and the expected value is
E(X) = 100*0.5 - 100*0.5 = 0
1/8
simply subtract 3/8 and 1/4.
hope this helps
Samuel used 1/125 ounces of butter per jelly.