1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zepler [3.9K]
3 years ago
9

Which is a correct first step in solving 5-2x<8x-3

Mathematics
2 answers:
Nady [450]3 years ago
6 0
Add the like terms, 8x and 2x.
I hope that helped! :)
alexandr1967 [171]3 years ago
3 0

Answer:

first step is combining like terms, subtract 8x from both sides

Step-by-step explanation:

5-2x

To solve any inequality , move all x terms together

To remove 8x from the right side, subtract 8x from both sides

5-10x

So first step is combining like terms

Subtract 5 from both sides

-10x

Divide both sides by -10

x>\frac{4}{5}

You might be interested in
Simplify 8 over negative 4 divided by negative 3 over 9. 6 −6 12 −12
skelet666 [1.2K]

Answer:

6

Step-by-step explanation:

Given

\frac{8}{-4} /  \frac{-3}{9}

Required

Solve

\frac{8}{-4} /  \frac{-3}{9}

We start by converting the division sign to multiplication

\frac{8}{-4} /  \frac{-3}{9} =\frac{8}{-4} *  \frac{-9}{3}

Then, we divide -9 by 3

\frac{8}{-4} /  \frac{-3}{9}=\frac{8}{-4} *  -3

Then, we divide 8 by -4

\frac{8}{-4} /  \frac{-3}{9}=-2 *  -3

Multiply -2 and -3 to give final result

\frac{8}{-4} /  \frac{-3}{9} = 6

Hence, \frac{8}{-4} /  \frac{-3}{9} is equivalent to 6

4 0
3 years ago
Angelo's mother put $50 on his lunch card. He spends the same amount
amid [387]

Answer:

Given that Angelo spends the same amount every day from the amount in

the lunch card, the function of the amount remaining is a linear function.

The constant rate of change of the function is; -5.25

The two ordered pairs used to find the constant rate of change are; (1, 44.75) and (2, 39.5)

Reasons:

The amount Angelo's mother put on the lunch card = $50

A possible table of values to the question is presented as follows;

Required:

The constant rate of the function that gives the amount remaining from the

amount Angelo's mother put on his lunch card.

Solution:

The two ordered pairs that can be used to find the slope or constant rate of change are;

(x₁, y₁) = (1, 44.75), and (x₂, y₂) = (2, 39.5)

With the above two ordered pairs, we have the constant rate of change of the function given as follows;

The constant rate of change for the function that gives the amount remaining in the lunch card is; -5.25

3 0
3 years ago
Suppose two parallel lines are cut by a transversal.which angle must be supplementary
Alborosie

Adjacent angles are supplementary

4 0
3 years ago
Find the distance between lines 8x−15y+5=0 and 16x−30y−12=0.
AlladinOne [14]

Answer:

The distance between the two parallel lines is 11/17 units

Step-by-step explanation:

we have

8x-15y+5=0 -----> equation A

16x-30y-12=0 ----> equation B

Divide by 2 both sides equation B  

8x-15y-6=0 ----> equation C

Compare equation A and equation C

Line A and Line C are parallel lines with different y-intercept

step 1

Find the slope of the parallel lines (The slope of two parallel lines is the same)

8x-15y+5=0

15y=8x+5

y=\frac{8}{15}x+\frac{1}{3}

the slope is

m=\frac{8}{15}

step 2

Find the slope of a line perpendicular to the given lines

Remember that

If two lines are perpendicular then their slopes are opposite reciprocal (the product of their slopes is -1)

m1*m2=-1

we have

m1=\frac{8}{15}

therefore

m2=-\frac{15}{8}

step 3

Find the equation of the line perpendicular to the given lines

assume any point that lie on line A

y=\frac{8}{15}x+\frac{1}{3}

For x=0

y=\frac{1}{3}

To find the equation of the line we have

point\ (0,1/3)  ---> is the y-intercept

m=-\frac{15}{8}

The equation in slope intercept form is

y=-\frac{15}{8}x+\frac{1}{3} -----> equation D

step 4

Find the intersection point of the perpendicular line with the Line C

we have the system of equations

y=-\frac{15}{8}x+\frac{1}{3} ----> equation D

8x-15y-6=0 ----> y=\frac{8}{15}x-\frac{2}{5} ----> equation E

equate equation D and equation E and solve for x

\frac{8}{15}x-\frac{2}{5}=-\frac{15}{8}x+\frac{1}{3}

\frac{8}{15}x+\frac{15}{8}x=\frac{1}{3}+\frac{2}{5}  

Multiply by 120 both sides to remove fractions

64x+225x=40+48

289x=88

x=88/289

Find the value of y

y=-\frac{15}{8}(88/289)+\frac{1}{3}

y=-\frac{206}{867}

the intersection point is (\frac{88}{289},-\frac{206}{867})

step 5

Find the distance between the points (0,\frac{1}{3}) and (\frac{88}{289},-\frac{206}{867})

the formula to calculate the distance between two points is equal to

d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}

substitute the values

d=\sqrt{(-\frac{206}{867}-\frac{1}{3})^{2}+(\frac{88}{289}-0)^{2}}

d=\sqrt{(-\frac{495}{867})^{2}+(\frac{88}{289})^{2}}

d=\sqrt{(\frac{245,025}{751,689})+(\frac{7,744}{83,521})}

d=\sqrt{\frac{314,721}{751,689}}

d=\frac{561}{867}\ units

Simplify

d=\frac{11}{17}\ units

therefore

The distance between the two parallel lines is 11/17 units

see the attached figure to better understand the problem

4 0
3 years ago
. Write a word problem that can be acted out using these counters.
Rufina [12.5K]
Please comment on this answer and give me a full question and I will be just fine answering it for you.
8 0
3 years ago
Other questions:
  • Are same side interior angles congruent?
    11·2 answers
  • ℜ 0, -180 is the same rotation as ℜ 0, 180. True False
    5·1 answer
  • Convert the temperature 288 k to degrees celsius.
    8·2 answers
  • which equation is equivalent to (4x^5+11)^2 a.16x^5 +121 b.16x^10+ 121 c.16x^10+88x^5+ 121 d.16x^25+88^5+121
    7·2 answers
  • HELP ASAP WILL GIVE BRAINLIST
    11·1 answer
  • Evaluate each expression when y=5.<br><br> B. 4(y+3)
    6·2 answers
  • There are 4 circles and 8 squares. What is the simplest ratio of circles to squares?
    6·1 answer
  • Please help me, i’ll mark brainliest
    10·2 answers
  • (10-4)+20 divided by 10?
    5·1 answer
  • Please help and give why
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!