Later the answer is C. Luster
Answer : The correct option is C.
Explanation :
Enthalpy of reaction : It is defined as the changes in heat energy takes place when reactants go to products. It is denotes as
.
= Energy of product - Energy of reactant
is positive when heat is absorbed and the reaction is endothermic.
is negative when heat is released and the reaction is exothermic.
In the given potential energy diagram, the energy of product at higher level and energy of reactant at lower level. The
for this reaction will be positive.
So, the enthalpy of reaction is defined as the difference of the energy of the reactants and the energy of the products.
Answer : The value of equilibrium constant (K) is, 0.004
Explanation :
First we have to calculate the concentration of 

and,

Now we have to calculate the value of equilibrium constant (K).
The given chemical reaction is:

Initial conc. 1.2 0 0
At eqm. (1.2-2x) 2x x
As we are given:
Concentration of
at equilibrium = x = 0.1 M
The expression for equilibrium constant is:
![K_c=\frac{[SO_2]^2[O_2]}{[SO_3]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSO_2%5D%5E2%5BO_2%5D%7D%7B%5BSO_3%5D%5E2%7D)
Now put all the given values in this expression, we get:



Thus, the value of equilibrium constant (K) is, 0.004
"<span>There is no change in the color of the bill's ink" is the one clue among the following choices given in the question that the currency is counterfeit. The correct option among all the options that are given in the question is the fourth option or the last option. I hope that the answer has come to your desired help.</span>
Answer:
6.82 moles of Fe2O3
Explanation:
Step 1:
Determination of the number of mole of in 450g of CO2.
This is illustrated below:
Molar Mass of CO2 = 12 + (2x16) = 44g/mol
Mass of CO2 = 450g
Number of mole of CO2 =.?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 450/44 = 10.23 moles
Step 2:
Determination of the number of mole of Fe2O3 needed for the reaction. This is illustrated below:
2Fe2O3 + 3C—> 4Fe + 3CO2
From the balanced equation above,
2 moles of Fe2O3 reacted to produce 3 moles of CO2.
Therefore, Xmol of Fe2O3 will react to produce 10.23 moles of CO2 i.e
Xmol of Fe2O3 = (2x10.23)/3
Xmol of Fe2O3 = 6.82 moles
Therefore, 6.82 moles of Fe2O3 is required.