Answer:
nwhbjwhr
Step-by-step explanation:
ewrwrwrwewe
Answer: (3x + 11y)^2
Demonstration:
The polynomial is a perfect square trinomial, because:
1) √ [9x^2] = 3x
2) √121y^2] = 11y
3) 66xy = 2 *(3x)(11y)
Then it is factored as a square binomial, being the factored expression:
[ 3x + 11y]^2
Now you can verify working backwar, i.e expanding the parenthesis.
Remember that the expansion of a square binomial is:
- square of the first term => (3x)^2 = 9x^2
- double product of first term times second term =>2 (3x)(11y) = 66xy
- square of the second term => (11y)^2 = 121y^2
=> [3x + 11y]^2 = 9x^2 + 66xy + 121y^2, which is the original polynomial.
Answer: A. 12, 12, 36
I hope this helps you
Answer:
1) 2019
2) 120-50=70
3) 2018
4) 100
5) 2018
6) 120-80=40
7) 2018
Step-by-step explanation:
1) 2019
2) 120-50=70
3) 2018
4) 100
5) 2018
6) 120-80=40
7) 2018
Answer:
<em>angle ABD =</em><u><em>55 degree</em></u>
<em>angle BCD= </em><u><em>125 degree</em></u>
Step-by-step explanation:
angle ABD and angle DBC are supplementary angles.
Hence, angle ABD +angle DBC = 180 --equation 1
angle ABD = (2x+15) ---equation 2
angle BCD = (4x+45) ------equation 3
ABD+DBC=180
(2x+15) + ( 4x+45 ) = 180
2x+4x+15+45=180
6x+60=180
6x=180-60
6x=120
x=120/6=20
angle ABD= 2x+15= 2(20) +15
=40+15= 55 degree
angle BCD= 4x+45 = 4(20) +45
= 80+45= 125 degree
Hence, angle ABD =55 degree
angle BCD= 125 degree
<em>Hope this helps.</em>