Answer:
23
Step-by-step explanation:
plug and chug: 5(4)+3=20+3=23
Answer:
sadia is 32
Step-by-step explanation:
sadia : father : total
3 6 9
Divide 96 by 9
96/9 = 32/3
Multiply each by 32/3
sadia : father : total
3*32/3 6*32/3 9*32/3
32 64 96
Answer:
Please check the explanation.
Step-by-step explanation:
Part a)
Given that the two parallel lines are crossed by a transversal line.
Given that
m∠2 = 2x + 54 and m∠6 = 6x - 11
Angle ∠2 and ∠6 are corresponding angles.
Corresponding angles are congruent.
Thus,
m∠2 = m∠6
2x + 54 = 6x - 11
flipe the equation
6x - 11 = 2x + 54
subtract 2x from both sides
6x - 2x - 11 = 2x - 2x + 54
4x - 11 = 54
adding 11 to both sides
4x - 11 + 11 = 54 + 11
4x = 65
dvide both sides by 4
4x/4 = 65/4
x = 16.2500 (round to 4 decimal places)
Part b)
We have already determined
x = 16.2500
Given
m∠2 = 2x + 54
substitute x = 16.2500 in the euation
= 2(16.2500) + 54
= 86.5°
As angle ∠2 and angle ∠1 lie on a straight line. Hence, the sum of their angles must be 180°.
i.e.
m∠1 + m∠2 = 180°
substituting m∠2 = 86.5° in the equation
m∠1 + 86.5° = 180°
subtracting 86.5° from both sides
m∠1 + 86.5° - 86.5° = 180° - 86.5°
m∠1 = 93.5°
Therefore, the measure of angle m∠1 is:
I believe it is 1500
(1920 - 420)
Answer:
Part A) Circumference
Part B) 
Part C) The distance traveled in one rotation is 628.32 feet
Step-by-step explanation:
Part A) we know that
The distance around the circle is equal to the circumference.
The Ferris Wheel have a circular shape
so
To find out the distance around the Ferris Wheel you should use the circumference
Part B) What is the formula needed to solve this problem?
we know that
The circumference is equal to multiply the number π by the diameter of the circle
so

Part C) What is the distance traveled in one rotation?
we know that
One rotation subtends a central angle of 360 degrees
The distance traveled in one rotation is the same that the circumference of the Ferris wheel
we have
----> diameter of the Ferris wheel
substitute in the formula of circumference

assume


therefore
The distance traveled in one rotation is 628.32 feet