Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
Materials<span> and their </span>properties<span>: </span>compounds like<span> sodium chloride - an interactive educational resource for 11 to 14 year olds. ... Elements are substances (</span>like<span> hydrogen and oxygen) that can't be split into simpler substances. ... For </span>each<span> statement, decide whether it describes a mixture or a </span>compound<span> and check the box.</span>
The correct answer for this question is this one: " a.The solution has a volume of 25 mL "
The observation that shows a quantitative observation is when you are talking about numeric data. Just like this one, <em>The solution has a volume of 25 mL </em>
Hope this helps answer your question and have a nice day ahead.
Answer:
8.96 g/mL
Explanation:
density = mass / volume
density = 134.3g / 15.0 mL
density = 8.96 g/mL
Answer:
HCl(aq) + KOH(aq) ⇒ KCl(aq) + H₂O(l)
Explanation:
Hydrochloric acid is an acid because it releases H⁺ in an aqueous solution.
Potassium hydroxide is a base because it releases OH⁻ in an aqueous solution.
When an acid reacts with a base they form a salt and water. This is a neutralization reaction. The neutralization reaction between hydrochloric acid and potassium hydroxide is:
HCl(aq) + KOH(aq) ⇒ KCl(aq) + H₂O(l)