Answer:
true
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases.
The reason as to why fungi fossils seem so rare is that they are usually microscopic and often difficult or impossible to identify.
Not much information on fungi fossils has been documented. This could be because fungi fruiting bodies consist of soft, fleshy and easily degradable tissues which due to their poor integrity do not keep or preserve as well as animal tissue.
Even when available, it takes a trained eye to recognize fungal fossils. Not many people have the training and expertise to recognize the fossils.
Answer: 3. adenine (A, green), thymine (T, red), cytosine (C, orange), and guanine (G, blue). 4. adenine (A), cytosine (C), and guanine (G) — are also found in DNA. 5. A nucleotide consists of a sugar molecule (either ribose in RNA or deoxyribose in DNA) attached to a phosphate group and a nitrogen-containing base. The bases used in DNA are adenine (A), cytosine (C), guanine (G), and thymine (T). 6. food crops like soy and corn that have been genetically modified for pest and herbicide resistance. These crops are widely known as “GMOs” (genetically modified organisms). 7. There are two differences that distinguish DNA from RNA: (a) RNA contains the sugar ribose, while DNA contains the slightly different sugar deoxyribose (a type of ribose that lacks one oxygen atom), and (b) RNA has the nucleobase uracil while DNA contains thymine. brainliest?
Explanation:
The density of a population of living organisms is usually measured in individuals on one square km. In here we have 50 earthworms on an area of 5 square meters, thus we have 10 earthworms on every square meter. In order to get to the result we need to see first how many square meters there are in one square km. One square km has one thousand meters of length and one thousand meters of width so:
1,000 x 1,000 = 1,000,000 km²
Since we established that we have 10 earthworms on every one square meter, we just need to multiply the number of square meters with the amount of earthworms on every square meter:
1,000,000 x 10 = 10,000,000
So we have a density of 10 million earthworms per square km.