Answer:
The hypotenuse is the longest side in a triangle.
a^2=b^2+c^2.
14^2=9^2+c^2.
c^2=196-81.
c^2=115.
c=√115.
c=10.72~11cm
Can you show the table
If the line is going down then it’s negative I was going up it’s positive if the line is constant it’s a constant
The more hours that she read the more pages that she’s able to read
Here we might have to find p(v intersection w) and for that we use the following formula
p(v U w) = p(v)+p(w)-p(v intersection w)
And it is given that p(v) =01.3 , p(w) = 0.04 and p(v U w ) = 0.14 .
Substituting these values in the formula, we will get
0.14 = 0.13 +0.04 -p(v intersection w)
p(v intersection w) =0.13 +0.04 -0.14 = 0.03
So the required answer of the given question is 0.03 .
Keywords:
<em>equation, variable, clear, round, centesima, neperian logarithm, exponential
</em>
For this case we have the following equation
, from which we must clear the value of the variable "x" and round to the nearest hundredth. To do this, we must apply properties of neperian and exponential logarithms. By definition:

So:
We apply Neperian logarithm to both sides:

We divide between "3" both sides of the equation:

Rounding out the nearest hundredth we have:

Answer:

Answer:
12 mph
Step-by-step explanation:
The relationship between jogging speed and walking speed means the time it takes to walk 4 miles is the same as the time it takes to jog 8 miles. Then the total travel time (0.75 h) is the time it would take to jog 1+8 = 9 miles. The jogging speed is ...
(9 mi)(.75 h) = 12 mi/h . . . average jogging speed
__
<em>Check</em>
1 mile will take (1 mi)/(12 mi/h) = 1/12 h to jog.
4 miles will take (4 mi)/(6 mi/h) = 4/6 = 8/12 h to walk.
The total travel time is (1/12 +8/12) h = 9/12 h = 3/4 h. (answer checks OK)
_____
<em>Comment on the problem</em>
Olympic race-walking speed is on the order of 7.7 mi/h, so John's walking speed of 6 mi/h should be considered quite a bit faster than normal. The fastest marathon ever run is on the order of a bit more than 12 mi/h, so John's jogging speed is also quite a bit faster than normal. No wonder he got tired.