1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
2 years ago
7

Help. Please its urgent show workings.​

Mathematics
1 answer:
laiz [17]2 years ago
5 0

Answer:

see explanation

Step-by-step explanation:

There are 2 possible approaches to differentiating these.

Expand the factors and differentiate term by term, or

Use the product rule for differentiation.

I feel they are looking for use of product rule.

Given

y = f(x). g(x) , then

\frac{dy}{dx} = f(x).g'(x) + g(x).f'(x) ← product rule

(a)

y = (2x - 1)(x + 4)²

f(x) = 2x - 1 ⇒ f'(x) = 2

g(x) = (x + 4)²

g'(x) = 2(x + 4) × \frac{d}{dx} (x + 4) ← chain rule

       = 2(x + 4) × 1

        = 2(x + 4)

Then

\frac{dy}{dx} = (2x - 1). 2(x + 4) + (x + 4)². 2

    = 2(2x - 1)(x + 4) + 2(x + 4)² ← factor out 2(x + 4) from each term

    = 2(x + 4) (2x - 1 + x + 4)

    = 2(x + 4)(3x + 3) ← factor out 3

    = 6(x + 4)(x + 1)

--------------------------------------------------------------------------

(b)

y =  x(x² - 1)³

f(x) = x ⇒ f'(x) = 1

g(x) = (x² - 1)³

g'(x) = 3(x² - 1)² × \frac{d}{dx} (x² - 1) ← chain rule

        = 3(x² - 1)² × 2x

        = 6x(x² - 1)²

Then

\frac{dy}{dx} = x. 6x(x² - 1)² + (x² - 1)³. 1

    = 6x²(x² - 1)² + (x² - 1)³ ← factor out (x² - 1)²

    = (x² - 1)² (6x² + x² - 1)

     = (x² - 1)²(7x² - 1)

----------------------------------------------------------------------

(c)

y = (x² - 1)(x³ + 1)

f(x) = x² - 1 ⇒ f'(x) = 2x

g(x) = (x³ + 1) ⇒ g'(x) = 3x²

Then

\frac{dy}{dx} = (x² - 1). 3x² + (x³ + 1), 2x

   = 3x²(x² - 1) + 2x(x³ + 1) ← factor out x

   = x[3x(x² - 1) + 2(x³ + 1) ]

   = x(3x³ - 3x + 2x³ + 2)

   = x(5x³ - 3x + 2) ← distribute

    = 5x^{4} - 3x² + 2x

--------------------------------------------------------------------

(d)

y = 3x³(x² + 4)²

f(x) = 3x³ ⇒ f'(x) = 9x²

g(x) = (x² + 4)²

g'(x) = 2(x² + 4) × \frac{d}{dx}(x² + 4) ← chain rule

       = 2(x² + 4) × 2x

       = 4x(x² + 4)

Then

\frac{dy}{dx} = 3x³. 4x(x² + 4) + (x² + 4)². 9x²

    = 12x^{4}(x² + 4) + 9x²(x² + 4)² ← factor out 3x²(x² + 4)

    = 3x²(x² + 4) [ 4x² + 3(x² + 4) ]

    = 3x²(x² + 4)(4x² + 3x² + 12)

    = 3x²(x² + 4)(7x² + 12)

You might be interested in
What is 67,234.63992 rounded to the nearest thousandth
GuDViN [60]
67,234.63992 to the nearest thousandth is 67,234.64.
7 0
3 years ago
Read 2 more answers
B) 75: 125 help me solve it
mash [69]

75:125

divide both sides by 25

75/25= 3

125/25= 5

Answer: 3:5

4 0
3 years ago
Which equation has the solutions x = -3 ± √3i/2 ?
Maurinko [17]

Answer:Answer is option C : [x^{2} + 3x + 3 ] =0

Note:  None of options matches with given question.

instead of "-3" , there should be "-\frac{3}{2}".

Step-by-step explanation:

Note:  None of options matches with given question.

instead of "-3" , there should be "\frac{3}{2}".  

Here, First thing you have to observe the nature of roots.

∴ x = -\frac{3}{2}+\frac{\sqrt{3}}{2}i and x = -\frac{3}{2}-\frac{\sqrt{3}}{2}

∴ [ x+(\frac{3}{2}-\frac{\sqrt{3}}{2}i) ][ x+(\frac{3}{2}+\frac{\sqrt{3}}{2}i) ]=0

∴ [ x^{2} + x(\frac{3}{2}+\frac{\sqrt{3}}{2}i)+ x(\frac{3}{2}-\frac{\sqrt{3}}{2}i) + (\frac{3}{2}-\frac{\sqrt{3}}{2}i)(\frac{3}{2}+\frac{\sqrt{3}}{2}i) ]=0

∴ [x^{2} + \frac{3}{2}x + \frac{\sqrt{3}}{2}ix + \frac{3}{2}x - \frac{\sqrt{3}}{2}ix + (3-\frac{\sqrt{3}}{2}i)(3+\frac{\sqrt{3}}{2}i) ] =0

∴ [x^{2} + 3x + (\frac{3}{2}-\frac{\sqrt{3}}{2}i)(\frac{3}{2}+\frac{\sqrt{3}}{2}i) ] =0

∴ [x^{2} + 3x + \frac{9}{4} - (\frac{\sqrt{3}}{2}i)(\frac{\sqrt{3}}{2}i) ] =0

∴ [x^{2} + 3x + \frac{9}{4} - (\frac{3}{4}) i^{2} ] =0

∴ [x^{2} + 3x + \frac{9}{4} + (\frac{3}{4}) ] =0

∴ [x^{2} + 3x + \frac{12}{4} ] =0  

∴ [x^{2} + 3x + 3 ] =0  

Thus, Answer is option C : <em>[x^{2} + 3x + 3 ] =0  </em>

6 0
3 years ago
Graph the line whose x-intercept is 8 and whose y-intercept is -9.
eduard

Answer: attached image

7 0
2 years ago
Kameron walks 3 miles in 18 minutes.how many can kameron walk in 120 minutes
Pani-rosa [81]

Answer:

20

Step-by-step explanation:

start by dividing 18 from 120(to find the amount of 18's in 120)

120 / 18 = 6.<u>6</u>

meaning there are 6.<u>6</u> sets of 18 in 120

multiply 3 by 6.<u>6</u>(since there's 3 miles for every 18 minutes)

3 x 6.<u>6</u> = 20

6 0
3 years ago
Other questions:
  • Find the missing measure for a right circular cone given the following information. Find L.A. if r = 6 and h = 8 48 60 96
    9·1 answer
  • Find the rate of change in the table​
    15·1 answer
  • I dont get this, can anyone help?
    8·1 answer
  • A proton represents a positive charge. Write an integer to represent 5 protons. An electron represents a negative charge. Write
    13·1 answer
  • How do i solve the square root problems?
    9·1 answer
  • The marked price of a watch is Rs. 4,000. A shopkeeper sold it at
    12·1 answer
  • you have $47 to spend at the music store. Each cassette tape costs $5 and each CD cost $10. write a linear inequality that repre
    12·2 answers
  • What is the measure of angle a?​
    5·1 answer
  • Help pls!!!!! Brainliest goes to first right answer
    10·2 answers
  • Which of the following conditions is not sufficient to prove that a quadrilateral is a parallelogram?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!