1.1 A. An electric oven with a resistance of 201Ω and a voltage of 220V drwa a current of 1.1 A.
The easiest way to solve this problem is using the Ohm's Law I = V/R.
An electric oven has R = 201Ω, and a drop of voltage V = 220v, solve using I = V/R:
I = 220V / 201Ω
I = 1.09 A ≅ 1.1 A
Answer:
Explanation:
Given a particle of mass
M = 1.7 × 10^-3 kg
Given a potential as a function of x
U(x) = -17 J Cos[x/0.35 m]
U(x) = -17 Cos(x/0.35)
Angular frequency at x = 0
Let find the force at x = 0
F = dU/dx
F = -17 × -Sin(x/0.35) / 0.35
F = 48.57 Sin(x/0.35)
At x = 0
Sin(0) =0
Then,
F = 0 N
So, from hooke's law
F = -kx
Then,
0 = -kx
This shows that k = 0
Then, angular frequency can be calculated using
ω = √(k/m)
So, since k = 0 at x = 0
Then,
ω = √0/m
ω = √0
ω = 0 rad/s
So, the angular frequency is 0 rad/s
The rms speed can be calculated using the following rule:
rms = sqrt ((3RT) / (M)) where:
R is the gas constant = 8.314 J/mol-K
T is the temperature = 31.5 + 273 = 304.5 degrees kelvin
M is the molar mass = 2*14 = 28 grams = 0.028 kg
Substitute with the givens to get the rms speed as follows:
rms speed = sqrt [(3*8.314*304.5) / (0.028)] = 520.811 m/sec
Answer:
Oi, mate its false
Explanation:
because if an leaf floats down from a tree it is not considered an object for a free-fall
The distance from the Earth to the Sun is 92.96 million mi.