The solution would be like
this for this specific problem:
<span>v = ? </span><span>
<span>u = 0.0 m/s </span>
<span>a = 9.8 m/s^2 </span>
<span>s = 56.1 m </span></span>
<span>v^2 = (0.0 m/s)^2 + [2 *
(9.8 m/s^2) * (56 m) ] </span><span>
<span>v^2 = 2 * (9.8 m/s^2) * (56 m) </span>
<span>v^2 = 1,097.6 m^2/s^2 </span>
<span>v = SQRT {1,097.6 m^2/s^2 } </span></span>
v = 33.1 m/s
<span>v = u + at </span>
<span>(v - u) / a = t </span>
[ (33.1 m/s) - (0.0 m/s)
] / (9.8 m/s^2) = 3.38 seconds
If the pigeon is 56.0 m below the initial position of the
falcon, it will take 3.38 seconds for the falcon to reach the pigeon. I am
hoping that this answer has satisfied your query and it will be able to help
you in your endeavor, and if you would like, feel free to ask another question.
Answer:
The windowpanes are- transparent.
The color of the panes are due to the wavelengths of light that the glass- allows to pass through
Explanation:
Just answered the question.
Magnetism is <span>a physical phenomenon produced by the motion of electric charge, resulting in attractive and repulsive forces between objects.</span>
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec