Drift velocity is equal to displacement of the moving object per unit time. The SI unit for displacement is meters while that of time is second. Hence the derived SI unit of velocity is meter per second. This also applies to electron mobility which relates to the displacement per unit time of a moving electron
Gases can be compressed, because they just take up the space surrounding them. The attractive forces between the particles in a gas are very weak, so the particles are free to move in random direction. They just move along until they collide, either with the walls of the container or with each other. Moreover, gases can be compressed because the particles are far apart and they have space to move into.
Strong Nuclear force: it is the short range force and strongest fundamental force in all type of forces.
Electromagnetism: this is the force due to magnetic and electric behavior of the particles. It is moderate type of force and its range is more than Nuclear force.
Weak Nuclear Force: This force is also short range force which act between the nucleoside. But this force is also moderate type of force
Gravitational force: this force is between two point masses and least order of force. also the range of this force is upto infinite.
so the correct order of this fundamental force is
<em>strong nuclear, electromagnetism, weak nuclear, gravitational</em>
The most dangerous frequencies of electromagnetic energy are X-rays, gamma rays, ultraviolet light and microwaves. X-rays, gamma rays and UV light can damage living tissues, and microwaves can cook them. Hope this helps! =^-^=
There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?