Answer:

Step-by-step explanation:
We have to use the slope formula: m = slope
(x1, y1) = coordinates of the first point in the line
(x2, y2) = coordinates of the second point in the line
Here, we'll plug into our given points to give; 
Solving this, we get,
, but we're not done, as this fraction can be reduced.
Diving both sides of the fraction by 2, we get our final answer of
.
Answer:
<h2>30 ft. tall</h2><h2 />
Step-by-step explanation:
ratio and proportion:
<u>20 ft. long</u> = <u> 4 ft. long</u>
x tall 6 ft. tall
4 (x) = 20 (6)
x = 120 / 4
x = 30 ft. tall
Answer:
B
Step-by-step explanation:
Using the rule of exponents
×
= 
= 1
Given
× 
= 
= 
= 1 → B
Answer:
a) n= 1045 computers
b) n= 442 computers
c) A. Yes, using the additional survey information from part (b) dramatically reduces the sample size.
Step-by-step explanation:
Hello!
The variable of interest is
X: Number of computers that use the new operating system.
You need to find the best sample size to take so that the proportion of computers that use the new operating system can be estimated with a 99% CI and a margin of error no greater than 4%.
The confidence interval for the population proportion is:
p' ±
* 

a) In this item there is no known value for the sample proportion (p') when something like this happens, you have to assume the "worst-case scenario" that is, that the proportion of success and failure of the trial are the same, i.e. p'=q'=0.5
The margin of error of the interval is:
d=
* 



![n= [p'(1-p')]*(\frac{Z_{1-\alpha /2}}{d} )^2](https://tex.z-dn.net/?f=n%3D%20%5Bp%27%281-p%27%29%5D%2A%28%5Cfrac%7BZ_%7B1-%5Calpha%20%2F2%7D%7D%7Bd%7D%20%29%5E2)
![n=[0.5(1-0.5)]*(\frac{2.586}{0.04} )^2= 1044.9056](https://tex.z-dn.net/?f=n%3D%5B0.5%281-0.5%29%5D%2A%28%5Cfrac%7B2.586%7D%7B0.04%7D%20%29%5E2%3D%201044.9056)
n= 1045 computers
b) This time there is a known value for the sample proportion: p'= 0.88, using the same confidence level and required margin of error:
![n= [p'(1-p')]*(\frac{Z_{1-\alpha /2}}{d} )^2](https://tex.z-dn.net/?f=n%3D%20%5Bp%27%281-p%27%29%5D%2A%28%5Cfrac%7BZ_%7B1-%5Calpha%20%2F2%7D%7D%7Bd%7D%20%29%5E2)
![n= [0.88*0.12]*(\frac{{2.586}}{0.04})^2= 441.3681](https://tex.z-dn.net/?f=n%3D%20%5B0.88%2A0.12%5D%2A%28%5Cfrac%7B%7B2.586%7D%7D%7B0.04%7D%29%5E2%3D%20441.3681)
n= 442 computers
c) The additional information in part b affected the required sample size, it was drastically decreased in comparison with the sample size calculated in a).
I hope it helps!
No 2.1 is not bigger than 2.20 because when you add a zero to the end of 2.1 it makes it 2.10.