Answer: must have THE SAME number of atoms for each element
Explanation: Chemical equations must be balanced -- they must have the same number of atoms of each element on both sides of the equation. As a result, the mass of the reactants must be equal to the mass of the products of the reaction.
Answer:
1.40*10⁻² M
Explanation:
We have the solubility formula
Solubility,
S = KH*P
where
KH = measure of hardness of water / carbonate hardness = 3.50*10⁻² mol/L.atm
P = atmospheric pressure = 0.400 atm
Hence, we have
S = KH*P
= (3.50*10⁻² mol/L.atm)*(0.400 atm)
= 1.40*10⁻² mol/L
But 1 mol/L = 1 M,
Hence, the answer (1.40*10⁻² mol/L
) is equivalent to
= 1.40*10⁻² M
Answer:
2Li(s) + ⅛S₈(s, rhombic) + 2O₂(g) → Li₂SO₄(s)
Explanation:
A thermochemical equation must show the formation of 1 mol of a substance from its elements in their most stable state,.
The only equation that meets those conditions is the last one.
A and B are wrong , because they show Li₂SO₄ as a reactant, not a product.
C is wrong because Li⁺ and SO₄²⁻ are not elements.
D is wrong because it shows the formation of 8 mol of Li₂SO₄.
<h3>
Answer:</h3>
82.11%
<h3>
Explanation:</h3>
We are given;
- Theoretical mass of the product is 137.5 g
- Actual mass of the product is 112.9 g
We are supposed to calculate the percentage yield
- We need to know how percentage yield is calculated;
- To calculate the percentage yield we get the ratio of the actual mass to theoretical mass and express it as a percentage.
Thus;
% yield = (Actual mass ÷ Experimental mass) × 100%
= (112.9 g ÷ 137.5 g) × 100%
= 82.11%
Therefore, the percentage yield of the product is 82.11 %