Answer:
Adding the 2 known angles: 60° + 100° = 160° We subtract this from 180°. 180° – 160° = 20°. Our missing angle is 20°. To find a missing angle in a triangle we subtract the two known angles from 180°.
Step-by-step explanation:
 
        
                    
             
        
        
        
The answer is 9x⁴ᵃ - 24x²ᵃyᵃz³ᵃ + 16 y²ᵃz⁶ᵃ
(a - b)² = a² - 2ab + b²
(3x²ᵃ - 4yᵃz³ᵃ)² = (3x²ᵃ)² - 2 * 3x²ᵃ * 4yᵃz³ᵃ + (4yᵃz³ᵃ)² =
                         = 3²x²ᵃ*² - 2 * 3 * 4 x²ᵃ * yᵃz³ᵃ + 4²yᵃ*²z³ᵃ*² =
                         = 9x⁴ᵃ - 24x²ᵃyᵃz³ᵃ + 16 y²ᵃz⁶ᵃ
        
             
        
        
        
The discriminant of a polynomial is given by:
 b ^ 2-4ac
 Substituting the values we have:
 (-24) ^ 2-4 * (3) * (12) = 432
 Since the discriminator is greater than zero, then the roots are real.
 x = (- b +/- root (b ^ 2-4ac)) / (2a)
 Substituting the values:
 x = (- (- 24) +/- root (432) / (2 * (3))
 x = (- (- 24) +/- root (432) / (2 * (3))
 x = (- (- 24) +/- root (144 * 3) / (2 * (3))
 x = (24 +/- 12raiz (3) / (6)
 x = 4 +/- 2raiz (3)
 The roots are:
 x1 = 4 + 2raiz (3)
 x2 = 4 - 2raiz (3)
 Answer: 
 432
 the roots are real.
 x1 = 4 + 2raiz (3)
 x2 = 4 - 2raiz (3)
        
             
        
        
        
This is the concept of geometry, for us to prove the similarity of angles we can use the following postulates:
SAS (side-angle-side)
ASA (Angle side Angle)
SSS (side side side)
AAS (Angle Angle side)
therefore, given that AAA is used to prove similarity, another postulate that can be used to strengthen the postulate is SAS, because we already have the angle sizes, adding more sides will make the prove even stronger since we shall have three corresponding angles plus wo corresponding sides.
        
                    
             
        
        
        
The fourth number would be 105 like 98% sure