1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Solnce55 [7]
3 years ago
11

Which function represents the area with respect to time?

Mathematics
1 answer:
zhuklara [117]3 years ago
8 0
It’s C I think but I am not sure about it
You might be interested in
Mila has $420 to spend at a bicycle store for some new gear and biking outfits. Assume all prices listed include tax. She buys a
aksik [14]

she can buy 3 out fitsStep-by-step explanation:

7 0
3 years ago
Factor the expression completely. 60x^3+50x^5
STatiana [176]

Answer: 10x^3(6+5x^2)

4 0
3 years ago
I’m not sure if I’m right but can someone help.!
loris [4]

Answer:

4/9

Step-by-step explanation:

because it is 0.44444444 repeating :)

6 0
3 years ago
Read 2 more answers
Please help me thanks
Dovator [93]

Answer:

It is 61 degress an acute angle.

Step-by-step explanation:

3 0
3 years ago
Find y' if y= In (x2 +6)^3/2<br> y'=
Schach [20]

Answer:

\displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:                                                                \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:                                                                                     \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative: \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = ln(x^2 + 6)^{\frac{3}{2}}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Derivative] Chain Rule:                                                                                 \displaystyle y' = \frac{d}{dx}[ln(x^2 + 6)^{\frac{3}{2}}] \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:                                                 \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{3}{2} - 1} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  3. [Derivative] Simplify:                                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  4. [Derivative] ln Derivative:                                                                               \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot \frac{d}{dx}[x^2 + 6]
  5. [Derivative] Basic Power Rule:                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2 \cdot x^{2 - 1} + 0)
  6. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  7. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  8. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  10. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{6xln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  11. [Derivative] Factor:                                                                                         \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  12. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • The radius of a garbage can is 7 inches. Which expression can be used to find the garbage can's circumference in inches?
    6·2 answers
  • WILL MARK BRAINLIEST ASAP
    6·2 answers
  • A=(−3,2,3)A=(−3,2,3)B=(−3,5,2) P=(2,−3,2) Q=(2,0,1) Is PQ−→−PQ→ equivalent to AB−→−AB→? A. no B. yes
    11·1 answer
  • What is the range and domian of y=(x-4)
    13·1 answer
  • Help plz thank u!!!!!!!!!!
    8·1 answer
  • Charles wants to find out if the students in foreign language classes spend more time in class speaking in English or in the for
    5·1 answer
  • The volume of 100 drops of a liquid is 0.1 fluid ounces what is the volume of 10,000 drops
    11·1 answer
  • A toy manufacturer that 6% of its products are defective. if 550 toys are producted in one day, how many we be defective
    9·1 answer
  • 1. The speed of sound in water is 1,500 meters/second. How far can sound travel in 10
    13·1 answer
  • What is the value of X?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!