1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
9

Can anyone help me with Combining like terms with negative coefficients I'm not good at math

Mathematics
1 answer:
Viktor [21]3 years ago
7 0
Yes if you give me brainiest
You might be interested in
(a) the number 561 factors as 3 · 11 · 17. first use fermat's little theorem to prove that a561 ≡ a (mod 3), a561 ≡ a (mod 11),
Vitek1552 [10]
LFT says that for any prime modulus p and any integer n, we have

n^p\equiv n\pmod p

From this we immediately know that

a^{561}\equiv a^{3\times11\times17}\equiv\begin{cases}(a^{11\times17})^3\pmod3\\(a^{3\times17})^{11}\pmod{11}\\(a^{3\times11})^{17}\pmod{17}\end{cases}\equiv\begin{cases}a^{11\times17}\pmod3\\a^{3\times17}\pmod{11}\\a^{3\times11}\pmod{17}\end{cases}

Now we apply the Euclidean algorithm. Outlining one step at a time, we have in the first case 11\times17=187=62\times3+1, so

a^{11\times17}\equiv a^{62\times3+1}\equiv (a^{62})^3\times a\stackrel{\mathrm{LFT}}\equiv a^{62}\times a\equiv a^{63}\pmod3

Next, 63=21\times3, so

a^{63}\equiv a^{21\times3}=(a^{21})^3\stackrel{\mathrm{LFT}}\equiv a^{21}\pmod3

Next, 21=7\times3, so

a^{21}\equiv a^{7\times3}\equiv(a^7)^3\stackrel{\mathrm{LFT}}\equiv a^7\pmod3

Finally, 7=2\times3+1, so

a^7\equiv a^{2\times3+1}\equiv (a^2)^3\times a\stackrel{\mathrm{LFT}}\equiv a^2\times a\equiv a^3\stackrel{\mathrm{LFT}}\equiv a\pmod3

We do the same thing for the remaining two cases:

3\times17=51=4\times11+7\implies a^{51}\equiv a^{4+7}\equiv a\pmod{11}

3\times11=33=1\times17+16\implies a^{33}\equiv a^{1+16}\equiv a\pmod{17}

Now recall the Chinese remainder theorem, which says if x\equiv a\pmod n and x\equiv b\pmod m, with m,n relatively prime, then x\equiv b{m_n}^{-1}m+a{n_m}^{-1}n\pmod{mn}, where {m_n}^{-1} denotes m^{-1}\pmod n.

For this problem, the CRT is saying that, since a^{561}\equiv a\pmod3 and a^{561}\equiv a\pmod{11}, it follows that

a^{561}\equiv a\times{11_3}^{-1}\times11+a\times{3_{11}}^{-1}\times3\pmod{3\times11}
\implies a^{561}\equiv a\times2\times11+a\times4\times3\pmod{33}
\implies a^{561}\equiv 34a\equiv a\pmod{33}

And since a^{561}\equiv a\pmod{17}, we also have

a^{561}\equiv a\times{17_{33}}^{-1}\times17+a\times{33_{17}}^{-1}\times33\pmod{17\times33}
\implies a^{561}\equiv a\times2\times17+a\times16\times33\pmod{561}
\implies a^{561}\equiv562a\equiv a\pmod{561}
6 0
4 years ago
A) 169p⁴qr÷ (-13pq³r)<br> b) 3(x +2y) +5x - (y + 7)<br> c (3x –4)( 5x- 1)
Veseljchak [2.6K]

Answer:

A)  -13p^33q^-2   or -13p^3/q^2

B)  8x + 5y - 7

C)  15x^2 -23x + 4

Step-by-step explanation:

A) 169/(-13) = -13     p^4/p = p^3    q/q^3  = 1/q^2  which can be written as q^-2 and r/r is 1. So if you put this all together you get  -13p^33q^-2   or -13p^3/q^2

B)  3(x +2y) + 5x - (y + 7)

     3x + 6y + 5x - y - 7   distributive property

     3x + 5x + 6y - y  -7   combine like terms

      8x + 5y - 7              Answer

C)  (3x-4) (5x - 1)    Foil multiply the first terms in each parenthesis. the outer terms, the inner terms and the last terms

(3x)(5x) + (3x)(-1) + (-4)(5x)  + (-4)(-1)

15x^2  -3x - 20x + 4  

15x^2 -23x + 4

5 0
3 years ago
Please help brainiest is award.
lesantik [10]

it's easier b or d I'm not sure

8 0
3 years ago
Read 2 more answers
Please solve the following quadratic equation and show your work: x^2-2x+6=0
hichkok12 [17]
ax^2+bx+c=0\\\\\Delta=b^2-4ac\\\\if\ \Delta > 0\ then\ exist\ two\ solutions\\\\x_1=\dfrac{-b-\sqrt\Delta}{2a}\ and\ x_2=\dfrac{-b+\sqrt\Delta}{2a}\\\\if\ \Delta =0\ then\ exist\ one\ solution\ x_o=\dfrac{-b}{2a}\\\\if\ \Delta < 0\ then\ no\ solutions

We have:

x^2-2x+6=0\\\\a=1;\ b=-2;\ c=6\\\\\Delta=(-2)^2-4\cdot1\cdot6=4-24=-20 < 0

Answer: NO SOLUTIONS.
6 0
4 years ago
The function f(x) varies directly with x and f(x)=90 when x = 30. What is f(x) when x = 6?
maria [59]

Answer: just took the test f(x) = 18

Step-by-step explanation:

5 0
4 years ago
Read 2 more answers
Other questions:
  • Problem: Use a graphing calculator to find the equation of the line of best fit for the data below. Let x = 0 represent 1980, x
    6·1 answer
  • 10 × (8 + 3) – 6 + [8 × (3 + 2)]​
    14·2 answers
  • Jenny said that 6×(5×4)=(6×5)×4. explain why she decided the equation was true.
    15·2 answers
  • One day,the state fair total attendance was 126,945. Round 126,945 to the nearest hundred thousand, nearest ten thousand,And nea
    9·2 answers
  • If two is he same as to and too how are they different
    7·2 answers
  • What quadrilateral can you draw that has exactly one pair of parallel sides
    7·1 answer
  • In the following figure the value of x is
    15·2 answers
  • Dy/dx y = 3root(4x+1) -2x
    6·2 answers
  • Find the lowest common multiple (LCM) of 18 and 21.
    11·2 answers
  • A box of modeling clay with a mass of 4.5 kg is divided equally among 9 students. How many grams does each student get?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!