To solve this problem, you have to know these two special factorizations:

Knowing these tells us that if we want to rationalize the numerator. we want to use the top equation to our advantage. Let:
![\sqrt[3]{x+h}=x\\ \sqrt[3]{x}=y](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%2Bh%7D%3Dx%5C%5C%20%5Csqrt%5B3%5D%7Bx%7D%3Dy%20)
That tells us that we have:

So, since we have one part of the special factorization, we need to multiply the top and the bottom by the other part, so:

So, we have:
![\frac{x+h-h}{h(\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2})}=\\ \frac{x}{\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%2Bh-h%7D%7Bh%28%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%29%7D%3D%5C%5C%20%5Cfrac%7Bx%7D%7B%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%7D%20)
That is our rational expression with a rationalized numerator.
Also, you could just mutiply by:
![\frac{1}{\sqrt[3]{x_h}-\sqrt[3]{x}} \text{ to get}\\ \frac{1}{h\sqrt[3]{x+h}-h\sqrt[3]{h}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx_h%7D-%5Csqrt%5B3%5D%7Bx%7D%7D%20%5Ctext%7B%20to%20get%7D%5C%5C%20%5Cfrac%7B1%7D%7Bh%5Csqrt%5B3%5D%7Bx%2Bh%7D-h%5Csqrt%5B3%5D%7Bh%7D%7D%20)
Either way, our expression is rationalized.
The cheapest service would be the year in which the mean was the lowest. In Year 4, the mean was the lowest.
The most consistent service would be the year in which the range was the lowest. In Year 3, the range was the lowest.
If you are talking about a mixed number it would be 12 87/100 if you mean a fraction it is 1287/100
Answer:
<em>" Expected Payoff " ⇒ $ 0.830</em>
Step-by-step explanation:
Consider the probability of entering 1 ticket out of the 1000 entered;

<em>Solution ; " Expected Payoff " ⇒ $ 0.830 ( might or might not include 0 at end )</em>
This equation of the circle is in a center-radius form which is more generally written as,
(x - h)² + (y - k)² = r²
From the equation, the center of the circle is (h,k) and r is the radius. From the given equation above, the center of the circle is (-2,5).