A). |x| = |-x|
This is always true.
The definition of 'absolute' value is 'size of the number without its sign'.
That's what this expression says.
b). |x| = -|x|
This is never true, because an absolute value is never negative.
This one would true if x=0 . So maybe some people might say
it's sometimes true, but that doesn't feel right to me. I say never.
c). |-x| = -|x|
This looks to me like exactly the same situation as (b),
and I would say all the same things about it.
Answer in #1 it ads up by 8
Answer:
- The function f(x) = 9,000(0.95)^x represents the situation.
- After 2 years, the farmer can estimate that there will be about 8,120 bees remaining.
- The range values, in the context of the situation, are limited to whole number
Step-by-step explanation:
The "growth" rate is -5%, so the growth factor, the base in the exponential equation, is 1.00-5% =0.95.
Using x=2, we find the population in 2 years is expected to be about ...
f(2) = 9000·0.95^2 ≈ 8123 . . . . about 8120
Using x=4, we find the population in 4 years is expected to be about ...
f(4) = 9000·0.95^4 ≈ 7331 . . . . about 7330
Since population is whole numbers of bees, the range of the function is limited to whole numbers.
The domain of the function is numbers of years. Years can be divided into fractions as small as you want, so the domain is not limited to whole numbers.
The choices listed above are applicable to the situation described.
Thank you so much, you too.