Construct the perpendicular bisector of one side of triangle
Construct the perpendicular bisector of another side
Where they cross is the center of the Circumscribed circle
Place compass on the center point, adjust its length to reach any corner of the triangle, and draw your Circumscribed circle!
Answer:
3(x + 2)(2x - 5)
Step-by-step explanation:
Given
6x² - 3x - 30 ← factor out 3 from each term
= 3(2x² - x - 10) ← factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 2 × - 10 = - 20 and sum = - 1
The factors are + 4 and - 5
Use these factors to split the x- term
2x² + 4x - 5x - 10 ( factor the first/second and third/fourth terms )
= 2x(x + 2) - 5(x + 2) ← factor out (x + 2) from each term
= (x + 2)(2x - 5), thus
2x² - x - 10 = (x + 2)(2x - 5) and
6x² - 3x - 30
= 3(x + 2)(2x - 5) ← in factored form
There are 2 variables in this problem. One variable is the class number and other variable is the participation in extracurricular activities. Each variable has further two categories. There are two classes: Class 10 and 11. And students either participate or do not participate in extracurricular activities, which makes 2 categories.
The best approach to solve this question is to build a table and start entering the given information in it. When the given data has been entered fill the rest on basis of the data you have.
18 students from grade 11 participate in at least one Extracurricular activities. This means the rest students i.e. 22 students from grade 11 do not participate in Extracurricular activities.
32 students from grade 10 participate in at least one Extracurricular activities. This means total students who participate in at least one Extracurricular activities are 18 + 32 = 50 students.
The rest 50 students do not participate in at least one Extracurricular activities. From these 22 are from class 11. So the rest i.e. 28 are from class 10.
You could just subtract it or you could make it into a plus negative
Answer:
when they are intersecting at a 90 degree angle.
Step-by-step explanation:
when lines intersect, they just cross over one another at any point. but with perpendicular lines, they have to be at a right angle. an example of this is a square. all of its corners are perpendicular