Answer:
See below
Step-by-step explanation:
![9.( {m}^{3} {n}^{5} )^{ \frac{1}{4} } \\ = m^{\frac{3}{4}}n^{\frac{5}{4}}\\ \\ 10. \sqrt[5]{ \sqrt[4]{x} } \\ = \sqrt[5]{ {x}^{ \frac{1}{4} } } \\ = {( {x}^{ \frac{1}{4} } )}^{ \frac{1}{5} } \\ = {x}^{ \frac{1}{4} \times \frac{1}{5} } \\ = {x}^{ \frac{1}{20} } \\ \\ \sqrt[5]{ \sqrt[3]{ {a}^{2} } } \\ = \sqrt[5]{ {a}^{ \frac{2}{3} } } \\ = {( {a}^{ \frac{2}{3} } )}^{ \frac{1}{5} } \\ = {a}^{ \frac{2}{3} \times \frac{1}{5} } \\ = {a}^{ \frac{2}{15} }](https://tex.z-dn.net/?f=9.%28%20%7Bm%7D%5E%7B3%7D%20%20%7Bn%7D%5E%7B5%7D%20%29%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%20%20%5C%5C%20%20%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B4%7D%7Dn%5E%7B%5Cfrac%7B5%7D%7B4%7D%7D%5C%5C%20%20%5C%5C%2010.%20%5Csqrt%5B5%5D%7B%20%5Csqrt%5B4%5D%7Bx%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B5%5D%7B%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B%28%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%20%3D%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B20%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%5Csqrt%5B5%5D%7B%20%5Csqrt%5B3%5D%7B%20%7Ba%7D%5E%7B2%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B5%5D%7B%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B%28%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%20%3D%20%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B15%7D%20%7D%20%20)
Answer:
y=42-x
x=42-y
Step-by-step explanation:
x=42-y
Subtract y from both sides of the equation
y=42-x
Subtract x from both sides of the equation
Answer: C. “BEC”
Step-by-step explanation:
Step-by-step explanation:
Using functions, the input is x, the output is y.
<u>Break down the problem:</u>
The output (y) is (equals) one-fourth (1/4) of the input (x)
y equals 1/4 of x

Yes because a triangles are is 1/3 b x h and a rectangles area is just b x h. The triangle would get smaller because it doesn’t have one corner, and the rectangle would keep a constant size.