Answer:
The center is (5, -6) with a radius of r
Step-by-step explanation:
First put the equation in Standard Form for a circle:
(x + a)² + (y + b)² = r²
Now, Group the term
x² + y² - 10x - 12y + 45 = 0
x² - 10x + y² - 12y = - 45
Then, The x and y terms must be perfect squares
x² - 10x + 25 + y² - 12y + 36 = - 45 + 25 + 36
add constant both sides we get,
x² - 10x + 25 + y² - 12y + 36 = 16
Now, Simplify
(x - 5)² + (y + 6)² = 16
√(x - 5)² + (y + 6)² = √16
<em>x - 5 + y + 6 = 4</em>
<em>Here</em><em>,</em><em> </em><em> (</em><em>a,</em><em>b</em><em>) = (5, -6) and </em><em>r²</em><em> </em><em>= 16, with r = 4</em>
Thus, The center is (5, -6) with a radius of r
<u>-TheUnknownScientist</u><u> 72</u>