1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
8

Easy science question please help. Will give brainliest

Physics
2 answers:
dybincka [34]3 years ago
6 0

Answer:

ITS A

ebnjhgfdfghj

aivan3 [116]3 years ago
6 0

Answer:

A.

Explanation:

Because the force of gas is pushing the rocket upward, while the force of gravity is trying to keep the rocket on the ground. (I'm sorry if this is wrong, I haven't been learning about Newton very much recently XD. But based on general knowledge and Google, I'm confident this is correct.)

You might be interested in
The terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid. Find the t
Serga [27]

Answer:

115 m/s, 414 km/hr

Explanation:

There are two forces acting on a skydiver: gravity and air resistance (drag).  At terminal velocity, the two forces are equal and opposite.

∑F = ma

D − mg = 0

D = mg

Drag force is defined as:

D = ½ ρ v² C A

where ρ is the fluid density,

v is the velocity,

C is the drag coefficient,

and A is the cross sectional surface area.

Substituting and solving for v:

½ ρ v² C A = mg

v² = 2mg / (ρCA)

v = √(2mg / (ρCA))

We're given values for m and A, and we know the value of g.  We need to look up ρ and C.

Density of air depends on pressure and temperature (which vary with elevation), but we can estimate ρ ≈ 1.21 kg/m³.

For a skydiver falling headfirst, C ≈ 0.7.

Substituting all values:

v = √(2 × 80.0 kg × 9.8 m/s² / (1.21 kg/m³ × 0.7 × 0.140 m²))

v = 115 m/s

v = 115 m/s × (1 km / 1000 m) × (3600 s / hr)

v = 414 km/hr

4 0
3 years ago
The speed of an arrow fired from a compound
san4es73 [151]

Answer:

A.) The arrow`s range is 624,996 m

B.) The arrow`s range is 846.887 m, when the horse is galloping

Explanation:

We have a case of oblique movement. In these cases the movement in the X axis is a Uniform Rectelinear Movement (URM), and a Uniform Accelerated Movement (UAM) in the Y axis.

By the way, the equations that we use for the X axis will be from URM, and those for the Y axis wiil be from UAM.

<u>Equations</u>

X axis:

X=v_{ox}*t

v_{0x} =v_0cos(\alpha)

Y axis:

Y= Y_0 +v_{y0} t - \frac{g}{2} t^2

A.) First, it is necessary to know t, total time.

To figure out t value, we use UAM, since time is determined by this movement.

Now, at the end of the movement, Y=0, then

0= Y_0 +v_{y0} t - \frac{g}{2} t^2

0=2.4m+79m/s*sin(39)t-(1/2*9.81m/s^2)t^2

Caculate the segcond degree equation to obtain the two possible values for t:

t_1= 10.18 \\t_2= -0.04046

But, in physics, time it could not be negative, so we take t_1= 10.18

Caculate now:

X=79m/s*cos(\39)*10.18s= 624.996 m

B.) Now, the narrow has an additional speed, that could be sum to the speed due to the bow.

v_0= 79m/s+13m/s= 92m/s

Using the same procedure that item A, caculate X

First, we need to know the new time

0=2.4m+92m/s*sin(39)t-(1/2*9.81m/s^2)t^2

And we obtain:

t_1=11.845s\\t_2=-0.041s

One more time, we take the positive time: t_1=11.845s

Finally:

X=92m/s *cos(39)*11.845s=846.887 m

6 0
3 years ago
A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
Studentka2010 [4]

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration (g=9.8 m/s^2) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

v=18.9 m/s

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

v_y^2 - u_y^2 = 2ah (1)

where

u_y = 16.4 m/s is the initial vertical velocity

v_y is the vertical velocity at height h

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, v_y = 0, so we can use the equation to find the maximum height

h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m

So, at half of the maximum height,

h = \frac{13.7}{2}=6.9 m

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s

And so, the speed of the stone at half of the maximum height is

v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

v_1 = 18.9 m/s

while the speed at half of the maximum height (part b) is

v_2 = 22.2 m/s

So the difference is

\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s

And so, in percentage,

\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%

So, the stone in part (b) is moving 17.4% faster than in part (a).

4 0
4 years ago
Why cant the moon be eclipsed when it is halfway between the nodes of its orbit?
Eddi Din [679]

The reason why the moon can't be eclipsed when it's halfway between the nodes of the orbit because the moon's orbit is at it's maximum deviation, meaning that it is leaving it's course from the sun's path, which would make the shadow fall way below or above the moon. Because of that, the moon can't eclipsed.


7 0
4 years ago
How is heat energy transferred from a warm object to a cold object there is direct contact?
sdas [7]
A is the answer!!!!!!!!!!!!
8 0
4 years ago
Read 2 more answers
Other questions:
  • a bus travels north on some busy city streets for 2.5 km, and a trip that takes 9 minutes. At one point in the trip, the bus is
    11·1 answer
  • A student on an amusement park ride moves in a
    11·1 answer
  • Describe the relationship between a moving objects mass and its kinetic energy
    6·1 answer
  • N which device is chemical energy transformed into electrical energy?
    6·2 answers
  • Trace the path of a ray emitted from the tip of the object through the focal point of the mirror and then the reflected ray that
    11·1 answer
  • Representation in the House is based on<br>A. equality between states<br><br>B. a state's population
    15·1 answer
  • A ball droped from a building. How fast is it traveling after falling 3.55s
    8·1 answer
  • A flywheel having constant angular acceleration requires 4.70 s to rotate through 164 rad . Its angular velocity at the end of t
    6·1 answer
  • Question 2 of 5
    7·1 answer
  • Your neighbor is riding her bike around the block. When she slows down and turns a corner, what changes about her?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!