Answer:
The dose is 6 mSV
Explanation:
The absorbed dose (in gray - Gy) is the amount of energy that ionizing radiation deposits per unit mass of tissue. That is,
Absorbed dose = Energy deposited / Mass
while Dose equivalent (DE) (in Seivert -Sv) is given by
DE = Absorbed dose × RBE (Relative biological effectiveness)
First, we will determine the Absorbed dose
From the question, Energy deposited = 30mJ and Mass = 50kg
From,
Absorbed dose = Energy deposited / Mass
Absorbed dose = 30mJ/50kg
Absorbed dose = 0.6 mGy
Now, for the Dose equivalent (DE)
DE = Absorbed dose × RBE
From the question, RBE = 10
Hence,
DE = 0.6mGy × 10
DE = 6 mSv
Ignoring air resistance, the fall has no effect on its horizontal speed. Traveling horizontally at 150 m/s for 25 seconds, it'll cover
(25) x (150m) = 3,750 meters
(about 2.3 miles)
Answer:
Kinematics, branch of physics and a subdivision of classical mechanics concerned with the geometrically possible motion of a body or system of bodies without consideration of the forces involved (i.e., causes and effects of the motions).
Answer:
(a) The "angular speed" is 5.88 rad/s.
Explanation:
Given values,
The length of the bar is L = 2m
The weight of the bar is w = 90 N
The metal bar is hanging vertically from the ceiling by a frictionless pivot
The mass of the ball is m = 3kg
The distance between the ceiling and the ball is d = 1.5m


(a) Calculating the angular speed:




The angular speed is 5.88 rad/s.
(b) The "angular momentum" is conserved because the torque is not exerted by "the pivot" on the system about the "axis of rotation" but the "linear momentum" is not conserved because "the pivot" exerts a "vertical" and a "horizontal force" on the system during the collision.
Answer:step 4: Sum vector components
step 5: Calculate magnitude of R
step 6:Calculate direction of R
Explanation: