A point at which parts of an artificial structure are joined. Hope this helps
To calculate we use the formula for a magnetic force in a current-carrying wire expressed as the product of the current, magnetic field and the length of the wire.
F = I x L x B
where F is the force on the wire, I is the current flowing on the wire, L is the length of the wire and B is the magnetic field.
F = 10.0 A x 1.2 m x 0.050 T
F = 0.60 N
The energy that transforms into kinetic energy is the Potential Energy. It happens that objects can store energy as a result of its position. Image for example a slingshot. When you stretch the slingshot, it stores energy, this energy would be the energy you used to stretch the slingshot, the material aborbs it and then release to throw the projectile.
Now, on earth and everywhere in the universe where you are close to an object with mass, it exists a force called gravity that attracts you towards that object. Every object that has mass exercises gravitational attration towards the other objects. It just happens that Earth is has so much mass that its gravitational pull is way stronger that the gravitational pull of another object on its surface. This means things will tend to be as close as earth as possible, and in order to move something away from earth, you will have to perform a force in the opposite direction to Earth and, therefore, consume energy. This energy will be store as potential energy, and when you drop the object, the potential energy will be the energy that will transform to kinetic energy.
Answer:
E1 = 10.15 * 10^4 N/C
E2 = 0
E3 = 10.15 *10^4 N/C
Explanation:
Given data:
Two 13 cm-long thin glass rods ( L ) = 0.13 m
charge (Q) = +11nC
distance between thin glass rods = 4 cm .
<u>Calculate the electric field strengths </u>
electric charge due to a single glass rod in the question ( E ) = 
equation 1 can be used to determine E1, E2 and E3 because the points lie within the two rods hence the net electric field produced will be equal to the difference in electric fields produced
applying equation 1 to determine E1
E1 =
( distance from 1 rod is 0.01 m and from the other rod is 0.03 )
= 
= 10.15 * 10^4 N/C
applying equation 1 to determine E2
E2 = 

therefore E2 = 0
E1 = E3
hence E3 = 10.15*10^4 N/C
Answer:
At low pressure-
At high pressure-
Explanation:
Initial speed,
Final speed,
Net horizontal force due to rolling friction
mg where m is mass, g is acceleration due to gravity,
is coefficient of rolling friction
From kinematic relation,
For each tire,
Making
the subject
Under low pressure of 40 Psi, d=18 m
Therefore,
At a pressure of 105 Psi, d=93.7
Therefore,