I think A because males have XY and females have XX but don’t count on it
Answer:d.are eventually replaced by electrons from photosytem 11
Explanation:there are two photosystems in the photosynthetic process.PSI and PS II. PS I has a reaction center called P700 because it's chlorophyll has a maximum absorption of 700nm wavelength.PSII has a reaction center called P680nm for similar reason.when an excited electron is transferred to P700,it becomes excited.this electron is passed down from from acceptor to another, until it is used to reduce NADP+ to NADPH.this electron is replaced when P680 gets excited by a photo of light and splits water to release electrons , protons and Oxygen
Substitution i believe. There’s nothing deleted
Answer:
A- A pH change can cause the enzyme to change its shape
Explanation:
A rise or fall in the pH of the medium from the optimum of pH 7 usually affect the enzymes' active sites of and therefore the shape and the rate of enzyme activity.
Assuming the pH is too low, the enzyme medium becomes acidic;Acidosis. The high Hydrogen ions concentration interacts with the R-groups of the amino acids moiety of the enzymes, this interaction affects the ionization of the R-groups, disrupting the ionic bonding holding these R-groups in shape.
This results in loss of the 3-Dimensional shape arrangements of the protein molecule and therefore of the active sites. Since active sites of enzymes determines the specificity of the <u>enzymes substrate- complex </u> to give <u>enzyme-product complex,</u> the catalytic activity of the enzymes decreases, <u>the rate of reaction decreases,and products formation stops, and the reaction also stops.</u>
The same is applicable to extremely high pH=Alkalosis.
However, the effective buffer system of the body prevents this scenarios from happening in real sense in the body. Through mopping by the haemoglobin, excretion by the kidney, etc
Answer:
The correct answer is: do not enter into a plexus and directly connect to the structures they supply.
Explanation:
<u>The </u><u>anterior rami</u><u> of the thoracic spinal nerves </u><u>from T1 to T11</u><u> give birth to the </u><u>intercostal nerves</u>, which are part of the somatic nervous system.
The intercostal nerves supply the thoracic pleura and abdominal peritoneum, and they vary from the anterior rami of the other spinal nerves in that they each take their own path without forming a plexus, <em>directly connecting to the structures they supply</em>.
The intercostal nerves are derived from the somatic nervous system, unlike the autonomic nervous system nerves that innervate the visceral pleura of the thoracic cavity. They can govern muscle contractions and give sensory information about the skin and parietal pleura as a result of this. This explains why damage to the thoracic cavity's interior wall can be felt as a severe discomfort in the damaged area. Damage to the visceral pleura causes a pain that is not localized.