Answer:
1. 7:1
2. 1:8
Step-by-step explanation:
1. Start by counting the number of triangles. We see: 56 triangles. Then, count the hearts. We see: 8 hearts.
So, the ratio of triangles to hearts is 56:8 which we simplify to get: 7:1.
2. Start by adding triangles to hearts. We get: 56+8 which equals 64.
The amount of hearts equals 8 so the ratio of hearts to (hearts + triangle) is! 8:64 which equals 1:8.
Answer:
168
Step-by-step explanation:
24 times 3 is 72 then also 24 times 4 is 96 add that and get 168
Answer:
Since there are 4 green bars for every 3 red bars and we are trying to find the number of red bars if there are 200 green bars, we can create the ratio:
4
x
:
3
y
Where x is equal to the number of green bars and y
is the number of red bars.
We know the number of green bars is equal to 200, so we can divide it by 4, giving us:
200
/4=50
Then we can solve for y
, the number of red bars.
// Multiple y by 50
3
⋅
50
=
150
So for every 4 green bars, there are 3 red bars.
For every 200 green bars, there are 150 red bars
Step-by-step explanation:
Answer:
The interval [32.6 cm, 45.8 cm]
Step-by-step explanation:
According with the <em>68–95–99.7 rule for the Normal distribution:</em> If
is the mean of the distribution and s the standard deviation, around 68% of the data must fall in the interval
![\large [\bar x - s, \bar x +s]](https://tex.z-dn.net/?f=%5Clarge%20%5B%5Cbar%20x%20-%20s%2C%20%5Cbar%20x%20%2Bs%5D)
around 95% of the data must fall in the interval
around 99.7% of the data must fall in the interval
![\large [\bar x -3s, \bar x +3s]](https://tex.z-dn.net/?f=%5Clarge%20%5B%5Cbar%20x%20-3s%2C%20%5Cbar%20x%20%2B3s%5D)
So, the range of lengths that covers almost all the data (99.7%) is the interval
[39.2 - 3*2.2, 39.2 + 3*2.2] = [32.6, 45.8]
<em>This means that if we measure the upper arm length of a male over 20 years old in the United States, the probability that the length is between 32.6 cm and 45.8 cm is 99.7%</em>