33 percent 0.33 that's your answer u could have divided 1 by 3
This equation simplified would be
-y(-5y+6)
The solution is B = 43
Step-by-step explanation:
Simplify and solve for the unknown for 5(B + 3) = 4(B - 7) + 2B
- Simplify each side
- Add the like terms in each side if need
- Separate the unknown in one side and the numerical term in the other side to find the value of the unknown
∵ 5(B + 3) = 4(B - 7) + 2B
- Multiply the bracket (B + 3) by 5 in the left hand side and multiply
the bracket (B - 7) by 4 in the right hand side
∵ 5(B + 3 ) = 5(B) + 5(3) = 5B + 15
∵ 4(B - 7) = 4(B) - 4(7) = 4B - 28
∴ 5B + 15 = 4B - 28 + 2B
- Add the like terms in the right hand side
∵ 4B + 2B = 6B
∴ 5B + 15 = 6B - 28
- Add 28 to both sides
∴ 5B + 43 = 6B
- Subtract 5B from both sides
∴ 43 = B
- Switch the two sides
∴ B = 43
To check the answer substitute the value of B in each side if the two sides are equal then the solution is right
The left hand side
∵ 5(43 + 3) = 5(46) = 230
The right hand side
∵ 4(43 - 7) + 2(43) = 4(36) + 86 = 144 + 86 = 230
∴ L.H.S = R.H.S
∴ The solution B = 43 is right
The solution is B = 43
Learn more:
You can learn more about the solution of an equation in brainly.com/question/11229113
#LearnwithBrainly
Answer:
6 cookies
____________________
Christine has 2 MORE than Matt.
2 + 2 = 4(Christine)
4 + 2 = 6(total)
Answer:
x ≈ 25.5°
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Trigonometry</u>
- [Right Triangles Only] SOHCAHTOA
- [Right Triangles Only] tanθ = opposite over adjacent
Step-by-step explanation:
<u>Step 1: Identify Variables</u>
Angle θ = <em>x</em>°
Opposite Leg = 10
Hypotenuse = 21
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute [tangent]: tanx° = 10/21
- Inverse trig: x° = tan⁻¹(10/21)
- Evaluate: x = 25.4633°
- Round: x ≈ 25.5°