Answer:
i tried the math and if im correct it should be 0.52N
Step-by-step explanation:
im sorry if its not correct bro
Using the two parallel line theorems we proved that ∠8 ≅ ∠4.
In the given question,
Given: f || g
Prove: ∠8 ≅ ∠4
We using given diagram in proving that ∠8 ≅ ∠4
Since f || g, by the Corresponding Angles Postulate which states that "When a transversal divides two parallel lines, the resulting angles are congruent." So
∠8≅∠6
Then by the Vertical Angles Theorem which states that "When two straight lines collide, two sets of linear pairs with identical angles are created."
∠6≅∠4
Then, by the Transitive Property of Congruence which states that "All shapes are congruent to one another if two shapes are congruent to the third shape."
∠8 ≅ ∠4
Hence, we proved that ∠8 ≅ ∠4.
To learn more about parallel line theorems link is here
brainly.com/question/27033529
#SPJ1
Answer:
Firstly, rewrite the equation:
⅓ (18 + 27) = 81
Substitute x for the given number of it's supposed equivalent.
In this case x = 12.
⅓ (18(12) + 27) = 81
Solve using PEMDAS and simplify what is in the parenthesis first. Then, multiply.
(18 x 12) + 27 = 243
Now, solving using PEMDAS, multiply the total of what you got that was originally in the parenthesis by ⅓ .
⅓ (243) = 81
When you multiple these number they are equivalent to 81.
81 = 81
Since the equation given, when substituted x for 12, is equivalent to 81, this proves that substituting x for 12 makes this equation true.