The cosine of an angle is the x-coordinate of the point where its terminal ray intersects the unit circle. So, we can draw a line at x=-1/2 and see where it intersects the unit circle. That will tell us possible values of θ/2.
We find that vertical line intersects the unit circle at points where the rays make an angle of ±120° with the positive x-axis. If you consider only positive angles, these angles are 120° = 2π/3 radians, or 240° = 4π/3 radians. Since these are values of θ/2, the corresponding values of θ are double these values.
a) The cosine values repeat every 2π, so the general form of the smallest angle will be
... θ = 2(2π/3 + 2kπ) = 4π/3 + 4kπ
b) Similarly, the values repeat for the larger angle every 2π, so the general form of that is
... θ = 2(4π/3 + 2kπ) = 8π/3 + 4kπ
c) Using these expressions with k=0, 1, 2, we get
... θ = {4π/3, 8π/3, 16π/3, 20π/3, 28π/3, 32π/3}
Start by laying out the 12.
The neighbors of 12 must be 11 and 10.
The neighbor of 11 must be 9, and the neighbor of 10 must be 8, and so on and so forth, until you get a unique arrangement.
Answer:
The answer is,surface area= ✓<u>416</u>
I’m not sure about the rest but the slope is 4 and the y intercept is 3.
Answer:
Step-by-step explanation: you have to divide 112 by 14