Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
![v = \frac{vmax[S]}{Km + [S]}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bvmax%5BS%5D%7D%7BKm%20%2B%20%5BS%5D%7D)
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min
C I’m pretty sure. I can explain just lmk
Answer:
Soils are a function of the five soil-forming factors: climate, organisms, relief, parent material, and time. Each of these factors range on a continuum, so the different soils of the world number in the thousands. Soil scientists recognize 12 major orders of soils.
Explanation:
Answer: Water
Explanation: During photosynthesis, plants take in carbon dioxide (CO2) and water (H2O) from the air and soil
Answer:
Gallium-72
Explanation:
The elements are identified by the number of protons of the atom, which is its atomic number.
In this case the number of protons 39 (atomic number 39) permit you to identify the element as gallium.
Now, to identify the isotope you tell the name of the element and add the mass number.
The mass number is the sum of the protons and the neutrons
In this case, the number of neutrons is the original 39 plus the 2 added suddenly, i.e. 39 + 2 = 41, so the mass number is 31 + 41 = 72
Therefore, the isotope is gallium - 72.