-70°C
Sink
little
hydrogen bonding
Explanation:
Completing the statements:
Water's boiling point would have been close to -70°C. Ice would sink in water. Water would release little heat to warm land during the winter. Ice is less dense than water because of the hydrogen bonding that forms a hexagonal structure in water.
The unique property of water is as a result of its hydrogen bonding. Water is a polar covalent compound. Like most covalent compound, water would have naturally had a very low boiling point.
The intermolecular forces all hydrogen bonding gives water its unique nature.
Hydrogen bond is formed by an attraction between hydrogen one water water molecule and more electronegative atom on another molecule usually oxygen, nitrogen and fluorine.
They form very strong intermolecular interaction responsible for the behavior of water.
The higher specific heat capacity of water is due to this bond. It absorbs a lot of heat and does not release them on time. This causes water release heat during winter.
Water has a hexagonal shape or structure linking each molecules.
learn more;
Hydrogen bonding brainly.com/question/10602513
#learnwithBrainly
I believe it would be a compound.
<u>Answer:</u> The mass of HCl present in 500 mL of acid solution is 36.5 grams
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is HCl
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

To calculate the mass of solute, we use the equation used to calculate the molarity of solution:

Molar mass of HCl = 36.5 g/mol
Molarity of solution = 2 M
Volume of solution = 500 mL
Putting values in above equation, we get:

Hence, the mass of HCl present in 500 mL of acid solution is 36.5 grams
Answer:
4.20 moles NF₃
Explanation:
To convert between moles of N₂ and NF₃, you need to use the mole-to-mole ratio from the balanced equation. This ratio consists of the coefficients of both molecules from the balanced equation. The molecule you are converting from (N₂) should be in the denominator of the ratio because this allows for the cancellation of units. The final answer should have 3 sig figs because the given value (2.10 moles) has 3 sig figs.
1 N₂ + 3 F₂ ---> 2 NF₃
2.10 moles N₂ 2 moles NF₃
--------------------- x --------------------- = 4.20 moles NF₃
1 mole N₂