The 3 phases of interphase can be broken down into the first growth phase of the cell - G1 phase. Then the S phase, where DNA replication and or DNA synthesis occurs to duplicate the number of chromosomes in the cell. Followed by the G2 phase, an additional growth phase and where specific protein come into play along with organelle and cellular component duplication.
Numerous degenerative neurological conditions, most notably Parkinson's disease, have been linked to an excessive buildup of alpha synuclein (a-syn) in the brain. Intraneuronal inclusions, often known as Lewy bodies, are neuropathological characteristics seen in Parkinson's disease, Lewy body dementia, and other synucleopathies. The aggregation of a-syn is their main structural component. A-syn accumulation, aggregation, and ensuing Lewy body formation can be attributed to a variety of biological processes. These include genetic changes in parkin, synuclein, or the deubiquitinating enzyme ubiquitin C-terminal hydrolase (UCH-L1), which results in less efficient removal of a-syn via the ubiquitin proteasomal pathway (UPP). Additionally, environmental variables and an age-related decline in antioxidant defense mechanisms that heighten oxidative stress and can have an impact on the formation or clearance of a-syn are intracellular insults.
We focused on changes in the aggregation and clearance of a-syn as impacted by the UPP and the oxidative stress pathways in our dynamic models of a-syn processing in both normal and various disease states. A free radical profile similar to that observed in vivo after exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is produced during simulation of enhanced oxidative stress (MPTP). To replicate the kinetics of a-syn that correlates to the neuropathology reported for the sporadic and hereditary types of Parkinson's disease, different model parameters of oxidative stress, UPP failure, or both routes are used. With the use of this in silico model, it is possible to evaluate the kinetics of pathway elements and more accurately identify and validate key pharmaceutical targets.
Learn more about Parkinson's disease brainly.com/question/28169444
#SPJ4
If the reactants are the same the equations are balance but if the reactants are not the same you have to make them balance, however if the reactants are not balance in order to balance the equation you need to use coefficient to balance the reactants and products of particular chemical reaction.
yet for Photosynthesis the equation
CO_2 + H_2O => C_6H_12O_6 + H_2O + O_2
Find the ugliest Compound in equation and do not balance first the repetitive Element.
A)So the ugliest one is C_6H_12O_6 and the C is not repetitive and have six atoms so there fore we multiply 6 as coefficient with carbon dioxide.
6CO₂+ H₂O → C₆H₁₂O₆+H₂O+O₂ but oxygen will get 12 atoms because is to all Carbon dioxide.
B) Then we have carbon balanced then we are going to balance Hydrogen, yet on product side it have 14 but on the reactant side it have 2 but Oxygen on product side is 9 there but on reactant side we have 1 so there fore we have to multiply water on reactant side by 12 and on product side multiply water with six and in addition multiply oxygen with 6 which land you at:
6CO₂+ 12H₂O → C₆H₁₂O₆+6H₂O+6O₂.
so we will have 24 hydrogen and 24 oxygen on both sides.
Hope that helps you.
The epiphyseal plate is the area of elongation in a long bone. It includes a layer of hyaline cartilage where ossification can continue to occur in immature bones. We can divide the epiphyseal plate into a diaphyseal side (closer to the diaphysis) and an epiphyseal side (closer to the epiphysis).