Explanation:
will dissociate into ions as follows.

Hence,
for this reaction will be as follows.
![K_{sp} = [Pb^{2+}][Br^{-}]^{2}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BPb%5E%7B2%2B%7D%5D%5BBr%5E%7B-%7D%5D%5E%7B2%7D)
We take x as the molar solubility of
when we dissolve x moles of solution per liter.
Hence, ionic molarities in the saturated solution will be as follows.
=
+ x
=
+ 2x
So, equilibrium solubility expression will be as follows.
=
Each sodium bromide molecule is giving one bromide ion to the solution. Therefore, one solution contains
= 0.10 and there will be no lead ions. So,
= 0
So,
will approximately equals to
.
Hence, ![K_{sp} = x[Br^{-}]^{2}_{o}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20x%5BBr%5E%7B-%7D%5D%5E%7B2%7D_%7Bo%7D)

x =
M
Thus, we can conclude that molar solubility of
is
M.
Answer:
HBr is a strong acid
Explanation:
KBr is a salt which makes a base . also KOH is a base
Weight we calculate using W= force multiplied to displacement
Mass SI unit is Kg
Weight SI unit is Newton (N)
Mass
Answer:
<h2> ncjchchdgshdihdyshfjgjfjfjfjfjfjfjcjfjfjcn jivk kvi</h2>
Answer is: Ksp for silver sulfide is 8.00·10⁻⁴⁸.
Reaction
of dissociation: Ag₂S(s) → 2Ag⁺(aq) + S²⁻(aq)<span>.
</span>s(Ag₂S) = s(S²⁻) = 1.26·10⁻¹⁶ M.
s(Ag⁺) = 2s(Ag₂S) = 2.52·10⁻¹⁶ M; equilibrium concentration of silver cations.
Ksp = s(Ag⁺)² · s(S²⁻).
Ksp = (2.52·10⁻¹⁶ M)² · 1.26·10⁻¹⁶ M.
Ksp = 6.35·10⁻³² M² · 1.26·10⁻¹⁶ M.
Ksp = 8.00·10⁻⁴⁸ M³.