Answer:
Nuclear Chain Reactions. A chain reaction refers to a process in which neutrons released in fission produce an additional fission in at least one further nucleus. This nucleus in turn produces neutrons, and the process repeats. The process may be controlled (nuclear power) or uncontrolled (nuclear weapons).
Explanation:
<h3><u>Answer;</u></h3>
They are made up of elements.
<h3><u>Explanation;</u></h3>
- An atom is the smallest particle of matter that still retains the property of the element.
- Two or more atoms combine to form elements or compounds. Elements are formed by two or more similar atoms, while compounds are formed by two or more different elements.
- Atoms are made up of subatomic particles; protons, electrons and neutrons. Electrons are negatively charged, protons are positively charged while neutrons have no charge.
<h3>Answer:</h3>
#1. Ca²⁺
# 2. Ca²⁺(aq) + SO₃²⁻(aq) → CaSO₄(s)
#3. 3Ag⁺(aq) + PO₄³⁻(aq) → Ag₃PO₄(s)
<h3>Explanation:</h3>
The question above concerns solubility of salts or ions in water.
The solution given contains Ag+, Ca2+, and Co2+ ions.
- In the first case, when Lithium bromide is added to the solution, there is no white precipitate formed.
- In the second case, the addition of Lithium sulfate results in the formation of a precipitate because of the Ca²⁺ in the solution combined with the SO₃²⁻ from lithium sulfate to form an insoluble CaSO₄.
- The net ionic equation for the reaction is;
Ca²⁺(aq) + SO₃²⁻(aq) → CaSO₄(s)
- From the solubility rules, all sulfates are soluble except BaSO₄, CaSO₄, and PbSO₄.
- In the third case, the addition of Lithium phosphate results in the formation of a precipitate because Ag⁺ ions in the solution combine with phosphate ions ( PO₄³⁻) from lithium phosphate to form an insoluble salt, Ag₃PO₄.
- The net ionic equation for the reaction is;
3Ag⁺(aq) + PO₄³⁻(aq) → Ag₃PO₄(s)
- According to solubility rules, all phosphates are insoluble in water except Na₃PO₄, K₃PO₄, and (NH₄)₃PO₄.
Answer:
E. None of these
Explanation:
We know, By GAS laws,
PV = NRT, where p- pressure, v- volume, n- number of moles, R- gas constant ,and T- temperature
Now, In the question, the number of moles remains the same as the gas is the same. so n is constant so we can compare n before and after a temperature change.
= 
where P1= 1 atm, P2 = 10 atm, V1= 20 mL, T1= 10°C and T2= 100°C
We don't have to worry about the standard units as they are present equally on both the sides and get cut, same goes for R( gas constant)
So putting values, we get

Cutting, R on both sides and moving contents to the right so that only V2 is left on the left.

∴ V2 = 
∴ V2 = 20mL
Yes if you search up your subject or topic then put quizlet you’ll find your answer but you may need to login in to get the best experience of studying that you want