1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
REY [17]
3 years ago
14

What operation would you use to solve: x+7=10

Mathematics
2 answers:
djyliett [7]3 years ago
5 0

Answer:

x=3

Step-by-step explanation:

x+7=10

x+7-7=10-7

x=3

Murljashka [212]3 years ago
5 0

Answer:

You would use subtraction

Step-by-step explanation:

To get 7 away, you need to subtract it

You might be interested in
There are 888 employees on The Game Shop's sales team. Last month, they sold a total of ggg games. One of the sales team members
luda_lava [24]

Answer:

\frac{g}{8}-17 games

Step-by-step explanation:

Employees: 8

Sales last month: g

Average: \frac{totalGames}{Employees}

To find out how many games Chris sold, we have to take the average and subtract 17.

\frac{g}{8}-17

Since there are no more values we can use, this is as simple as we can get it. If we knew how many games they sold last month, we could get an exact answer for Chris using this expression.

7 0
3 years ago
Read 2 more answers
a circle has a radius of 10 yards what is the circumference of the circle? express your answer using pie
Zarrin [17]
C = 2(3.14) x r
C = 6.28 x 10
C = 62.8 yards
7 0
3 years ago
John wants to make a 100 ml of 6% alcohol solution mixing a quantity of a 3% alcohol solution with an 8% alcohol solution. What
mart [117]

Answer:

-50 ml of 3% alcohol solution and 150 ml of 8% alcohol solution

Step-by-step explanation:

For us to solve this type of mixture problem, we must represent the problem in equations. This will be possible by interpreting the question.

Let the original volume of the first alcohol solution be represented with x.

The quantity of the first alcohol solution needed for the mixture is 3% of x

                   ⇒ \frac{3}{100} * x

                       = 0.03x

Let the original volume of the second alcohol solution be represented with y.

The quantity of the second alcohol solution needed for the mixture is 5% of y

                   ⇒ \frac{5}{100} * y

                       = 0.05y

The final mixture of alcohol solution is 6% of 100 ml

                 ⇒ \frac{6}{100} * 100 ml

                       = 6 ml

Sum of values of two alcohol solutions = Value of the final mixture

                     0.03x + 0.05y = 6 ml               ..........(1)

Sum of original quantity of each alcohol solution = Original volume of the of mixture

                     x + y = 100 ml                          ..........(2)      

For easy interpretation, I will be setting up a table to capture all information given in the question.

Component                       Unit Value      Quantity(ml)       Value

3% of Alcohol solution        0.03                 x                     0.03x

8% of Alcohol solution        0.08                 y                     0.08y

Mixture of 100ml of 6%        0.06               100                       6    

                                                                x + y = 100       0.03x + 0.08y =6

Looking at the equations we derived, we have two unknowns in two equations which is a simultaneous equation.

                                0.03x + 0.05y = 6 ml               ..........(1)

                                x + y = 100 ml                           ..........(2)    

Using substitution method to solve the simultaneous equation.

Making x the subject of formula from equation (2), we have,

                                x  = 100 - y                                 ..........(3)

Substituting  x  = 100 - y from equation (3) into equation (1)

                               0.03(100 - y) + 0.05y = 6  

                               3 - 0.03y + 0.05y = 6  

Rearranging the equation,            

                               0.05y - 0.03y = 6 - 3

                               0.02y = 3

                               y = \frac{3}{0.02}

                               y = 150 ml

Substituting y = 150 ml into equation (3) to get x

                              x  = 100 - 150 ml

                              x = - 50 ml

The quantity of the first alcohol solution needed for the mixture for 3% is - 50 ml

The quantity of the second alcohol solution needed for the mixture for 5% is 150 ml

This solution means 50 ml of the first alcohol solution must be removed from the mixture with 150 ml of the second alcohol solution to get a final mixture of 100 ml of 6% alcohol solution.

3 0
3 years ago
X 1/2 rational exponent
Lesechka [4]

Answer:

Step-by-step explanation:

Ok

7 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Other questions:
  • Whats the answer???​
    9·2 answers
  • A computer was on a scale for 2/3 of the original price.If the original price was 900,what was the sale price
    15·1 answer
  • In triangle STU s=9 cm t=15 and m
    11·1 answer
  • What is additive property
    5·1 answer
  • I really need help ! I don’t understand :(((
    7·2 answers
  • Rachel enjoys exercising outdoors. Today she walked miles in hours. What is Rachel’s unit walking rate in miles per hour and in
    9·2 answers
  • You drop a ball from a set of bleachers that is 64 feet above the ground. How long will it take the ball to hit the ground?
    15·1 answer
  • What is the greatest common factor of 48, 27, and 36
    6·2 answers
  • What is the length of a desk in centimeters ​
    7·1 answer
  • What are all the answers to this?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!