PbH4 will be formed as a result of a polar covalent bond between the H and the Pb.
Since H is more electronegative than the Pb, it is, thus, expected that the H would be able to pull the electron charge towards itself. This will result in the H being negative.
Based on this:
PbH4 would be expected to <span>have polar covalent bonds with a partial negative charges on the H atoms. </span>
Answer:
The mass of copper(II) sulfide formed is:
= 81.24 g
Explanation:
The Balanced chemical equation for this reaction is :

given mass= 54 g
Molar mass of Cu = 63.55 g/mol

Moles of Cu = 0.8497 mol
Given mass = 42 g
Molar mass of S = 32.06 g/mol

Moles of S = 1.31 mol
Limiting Reagent :<em> The reagent which is present in less amount and consumed in a reactio</em>n
<u><em>First find the limiting reagent :</em></u>

1 mol of Cu require = 1 mol of S
0.8497 mol of Cu should require = 1 x 0.8497 mol
= 0.8497 mol of S
S present in the reaction Medium = 1.31 mol
S Required = 0.8497 mol
S is present in excess and <u>Cu is limiting reagent</u>
<u>All Cu is consumed in the reaction</u>
Amount Cu will decide the amount of CuS formed

1 mole of Cu gives = 1 mole of Copper sulfide
0.8497 mol of Cu = 1 x 0.8497 mole of Copper sulfide
= 0.8497
Molar mass of CuS = 95.611 g/mol


Mass of CuS = 0.8497 x 95.611
= 81.24 g
Answer:
All of the above
Explanation:
(I'm assuming you meant to put Australia in the options)
Australia is in the southern hemisphere and has its summer in December etc. and Winter in July etc.
China is in the northern hemisphere and has its summer in July etc and Winter in December etc.
The delta H of -484 kJ is the heat given off when 2 moles of H2 react with 1 mole of O2 to make 2 moles of H2O. You don't have anywhere near that much reactants, only 1/4 as much
<span>actual delta H = 0.34 moles H2 x (-484 kJ / 2 moles H2) = 823 kJ </span>
<span>delta E = delta H - PdeltaV = 823 kJ - 0.41 kJ = 822 kJ</span>