To simplify
![\sqrt[4]{\dfrac{24x^6y}{128x^4y^5}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B24x%5E6y%7D%7B128x%5E4y%5E5%7D%7D)
we need to use the fact that
![\sqrt[4]{x^4}=|x|](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E4%7D%3D%7Cx%7C)
Why the absolute value? It's because
.
We start by rewriting as
![\sqrt[4]{\dfrac{2^23x^6y}{2^6x^4y^5}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B2%5E23x%5E6y%7D%7B2%5E6x%5E4y%5E5%7D%7D)
![\sqrt[4]{\dfrac{2^23x^4x^2y}{2^42^2x^4y^4y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B2%5E23x%5E4x%5E2y%7D%7B2%5E42%5E2x%5E4y%5E4y%7D%7D)
Since
, we have
, and the above reduces to
![\sqrt[4]{\dfrac{3x^2y}{2^4y^4y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B3x%5E2y%7D%7B2%5E4y%5E4y%7D%7D)
Then we pull out any 4th powers under the radical, and simplify everything we can:
![\dfrac1{\sqrt[4]{2^4y^4}}\sqrt[4]{\dfrac{3x^2y}{y}}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%5Csqrt%5B4%5D%7B2%5E4y%5E4%7D%7D%5Csqrt%5B4%5D%7B%5Cdfrac%7B3x%5E2y%7D%7By%7D%7D)
![\dfrac1{|2y|}\sqrt[4]{3x^2}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%7C2y%7C%7D%5Csqrt%5B4%5D%7B3x%5E2%7D)
where
allows us to write
, and this also means that
. So we end up with
![\dfrac{\sqrt[4]{3x^2}}{2y}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%7D%7B2y%7D)
making the last option the correct answer.
Answer:
answer A and B are the same there just the opposite of each other. so A or B would work.
Step-by-step explanation:
95×(12) +225×(12)
Answer:
AD = 85
Step-by-step explanation:
AD = AB + BC + CD ( substitute values , noting AB = CD = 20 ) , then
AD = 20 + 45 + 20 = 85
Your answer is 29.2 good sir.
Hope this helps :)
Step-by-step explanation:
a-³/b-²
b²/a³ = 6²/5³ = 36/125