Answer:
Let x be odd such that LCM {x,40} = 1400 .
Since 1400 = 23×52×7 , then
x ∈ {5m×7n∣(m,n) ∈ {0,1,2}×{0,1}} .
By testing these values, we find that x = 175 .
Answer:
4 units ...................
Answer:
(5.4k+7.9m+8.1n) centimeters
Step-by-step explanation:
Given the side length of a triangle;
S1 = (1.3k+3.5m) cm
S2 = (4.1k-1.6n) cm
S3 = (9.7n+4.4m) cm
Perimeter of the triangle = S1+S2 + S3
Perimeter of the triangle = (1.3k+3.5m) + (4.1k-1.6n) + (9.7n+4.4m)
Collect the like terms;
Perimeter of the triangle = 1.3k+4.1k+3.5m+4.4m-1.6n+9.7n
Perimeter of the triangle = 5.4k+7.9m+8.1n
Hence the expression that represents the perimeter of the triangle is (5.4k+7.9m+8.1n) centimeters
Answer:
There is a 34.3% probability that he makes all of the shots.
Step-by-step explanation:
For each foul shot that he takes during the game, there are only two possible outcomes. Either he makes it, or he misses. This means that we use the binomial probability distribution to solve this problem.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem we have that:

What is the probability that he makes all of the shots?
This is P(X = 3).


There is a 34.3% probability that he makes all of the shots.
I think the coordinates are 1, 10 but not positive because if you graph it you can see a kite in it so make the point close to 4,10