Answer option A
From the given graph is a Vertical ellipse
Center of ellipse = (-2,-3)
Vertices are (-2,3) and (-2,-9)
Co vertices are (-6,-3) and (2,-3)
The distance between center and vertices = 6, so a= 6
The distance between center and covertices = 4 , so b= 4
The general equation of vertical ellipse is
![\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2}=1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x-h%29%5E2%7D%7Bb%5E2%7D%20%2B%20%5Cfrac%7B%28y-k%29%5E2%7D%7Ba%5E2%7D%3D1)
(h,k) is the center
we know center is (-2,-3)
h= -2, k = -3 , a= 6 and b = 4
The standard equation becomes
![\frac{(x+2)^2}{4^2} + \frac{(y+3)^2}{6^2}=1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%2B2%29%5E2%7D%7B4%5E2%7D%20%2B%20%5Cfrac%7B%28y%2B3%29%5E2%7D%7B6%5E2%7D%3D1)
![\frac{(x+2)^2}{16} + \frac{(y+3)^2}{36}=1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%2B2%29%5E2%7D%7B16%7D%20%2B%20%5Cfrac%7B%28y%2B3%29%5E2%7D%7B36%7D%3D1)
Foci are (h,k+c) and (h,k-c)
![c=\sqrt{a^2-b^2}](https://tex.z-dn.net/?f=c%3D%5Csqrt%7Ba%5E2-b%5E2%7D)
Plug in the a=6 and b=4
![c=\sqrt{6^2-4^2}](https://tex.z-dn.net/?f=c%3D%5Csqrt%7B6%5E2-4%5E2%7D)
![c=\sqrt{20}](https://tex.z-dn.net/?f=c%3D%5Csqrt%7B20%7D)
, we know h=-2 and k=-3
Foci are
and ![(-2,-3-2\sqrt{5})](https://tex.z-dn.net/?f=%28-2%2C-3-2%5Csqrt%7B5%7D%29)
Option A is correct