1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
3 years ago
12

HALP PLLLLLLZZZZZZZ ILL GIVE U BRAINLIEST!!

Mathematics
1 answer:
insens350 [35]3 years ago
8 0

The answer to your question is A


You might be interested in
I don’t know how to Do this
Debora [2.8K]
Do What? What do you need help with??
4 0
3 years ago
1. Six more than the number of pumpkins tripled
vredina [299]
Is this the full question?
4 0
3 years ago
How to estimate to the nearest tens 671×32
aleksandrvk [35]

20, 100

Step-by-step explanation:

You look at the tens column, in this case the numbers would be "7" in the "671" and the "3" in the "32". If you're rounding the tens column you look at the ones column and if the number is bellow 5 you round down, if its 5 nd over you round up. Since the number is 1 in the ones column that means the 7 will round down so it would be "670", for "32" the number is "2" (which is bellow 5) so we will round down again to "30". This will leave you with the equation 670×30 which is 20, 100.

8 0
3 years ago
(d). Use an appropriate technique to find the derivative of the following functions:
natima [27]

(i) I would first suggest writing this function as a product of the functions,

\displaystyle y = fgh = (4+3x^2)^{1/2} (x^2+1)^{-1/3} \pi^x

then apply the product rule. Hopefully it's clear which function each of f, g, and h refer to.

We then have, using the power and chain rules,

\displaystyle \frac{df}{dx} = \frac12 (4+3x^2)^{-1/2} \cdot 6x = \frac{3x}{(4+3x^2)^{1/2}}

\displaystyle \frac{dg}{dx} = -\frac13 (x^2+1)^{-4/3} \cdot 2x = -\frac{2x}{3(x^2+1)^{4/3}}

For the third function, we first rewrite in terms of the logarithmic and the exponential functions,

h = \pi^x = e^{\ln(\pi^x)} = e^{\ln(\pi)x}

Then by the chain rule,

\displaystyle \frac{dh}{dx} = e^{\ln(\pi)x} \cdot \ln(\pi) = \ln(\pi) \pi^x

By the product rule, we have

\displaystyle \frac{dy}{dx} = \frac{df}{dx}gh + f\frac{dg}{dx}h + fg\frac{dh}{dx}

\displaystyle \frac{dy}{dx} = \frac{3x}{(4+3x^2)^{1/2}} (x^2+1)^{-1/3} \pi^x - (4+3x^2)^{1/2} \frac{2x}{3(x^2+1)^{4/3}} \pi^x + (4+3x^2)^{1/2} (x^2+1)^{-1/3} \ln(\pi) \pi^x

\displaystyle \frac{dy}{dx} = \frac{3x}{(4+3x^2)^{1/2}} \frac{1}{(x^2+1)^{1/3}} \pi^x - (4+3x^2)^{1/2} \frac{2x}{3(x^2+1)^{4/3}} \pi^x + (4+3x^2)^{1/2} \frac{1}{ (x^2+1)^{1/3}} \ln(\pi) \pi^x

\displaystyle \frac{dy}{dx} = \boxed{\frac{\pi^x}{(4+3x^2)^{1/2} (x^2+1)^{1/3}} \left( 3x - \frac{2x(4+3x^2)}{3(x^2+1)} + (4+3x^2)\ln(\pi)\right)}

You could simplify this further if you like.

In Mathematica, you can confirm this by running

D[(4+3x^2)^(1/2) (x^2+1)^(-1/3) Pi^x, x]

The immediate result likely won't match up with what we found earlier, so you could try getting a result that more closely resembles it by following up with Simplify or FullSimplify, as in

FullSimplify[%]

(% refers to the last output)

If it still doesn't match, you can try running

Reduce[<our result> == %, {}]

and if our answer is indeed correct, this will return True. (I don't have access to M at the moment, so I can't check for myself.)

(ii) Given

\displaystyle \frac{xy^3}{1+\sec(y)} = e^{xy}

differentiating both sides with respect to x by the quotient and chain rules, taking y = y(x), gives

\displaystyle \frac{(1+\sec(y))\left(y^3+3xy^2 \frac{dy}{dx}\right) - xy^3\sec(y)\tan(y) \frac{dy}{dx}}{(1+\sec(y))^2} = e^{xy} \left(y + x\frac{dy}{dx}\right)

\displaystyle \frac{y^3(1+\sec(y)) + 3xy^2(1+\sec(y)) \frac{dy}{dx} - xy^3\sec(y)\tan(y) \frac{dy}{dx}}{(1+\sec(y))^2} = ye^{xy} + xe^{xy}\frac{dy}{dx}

\displaystyle \frac{y^3}{1+\sec(y)} + \frac{3xy^2}{1+\sec(y)} \frac{dy}{dx} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} \frac{dy}{dx} = ye^{xy} + xe^{xy}\frac{dy}{dx}

\displaystyle \left(\frac{3xy^2}{1+\sec(y)} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} - xe^{xy}\right) \frac{dy}{dx}= ye^{xy} - \frac{y^3}{1+\sec(y)}

\displaystyle \frac{dy}{dx}= \frac{ye^{xy} - \frac{y^3}{1+\sec(y)}}{\frac{3xy^2}{1+\sec(y)} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} - xe^{xy}}

which could be simplified further if you wish.

In M, off the top of my head I would suggest verifying this solution by

Solve[D[x*y[x]^3/(1 + Sec[y[x]]) == E^(x*y[x]), x], y'[x]]

but I'm not entirely sure that will work. If you're using version 12 or older (you can check by running $Version), you can use a ResourceFunction,

ResourceFunction["ImplicitD"][<our equation>, x]

but I'm not completely confident that I have the right syntax, so you might want to consult the documentation.

3 0
2 years ago
The sizes in the above sequence make a geometric sequence. What is the ratio of the <br> sequence?
svetlana [45]
I dont know heelp
kkkkkkkkkk
5 0
3 years ago
Other questions:
  • 3 solutions for equation <br> y=7x
    14·1 answer
  • According to NBA standards, a basketball should bounce back 2/3 the distance from which it is dropped.
    10·2 answers
  • Which of the following is the most appropriate unit to describe the rate at which water flows over Niagara Falls?
    11·1 answer
  • What is the result of 3/ 1/6?
    10·2 answers
  • F a set of dishes thats 40% off has a sale price of $252, what was the original price?
    14·1 answer
  • A hardware store wants to enclose a 800 square foot rectangular area adjacent to its store to display gardening equipment. One s
    11·1 answer
  • G(t) = -9t - 4 <br> g( ) = 23
    6·1 answer
  • PLEASE HELP WHAT IS THE DOMAIN AND RANGE OF THIS GRAPH
    5·1 answer
  • A new car is purchased for $23,700 the value of the car depreciates at 13. 5% per year what will the value the car be to the nea
    5·1 answer
  • PLSSS HELP<br><br> 19+4x-20=6x-35
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!