Answer:
50:39
Step-by-step explanation:
The first number in the context always goes first!
Answer:
∠ 5 = 40°
Step-by-step explanation:
∠ 1 and ∠ 2 are adjacent angles and supplementary, thus
∠ 2 = 180° - ∠ 1 = 180° - 140° = 40°
∠ 5 and ∠ 2 are alternate angles and congruent , thus
∠ 5 = 40°
Well, I bet you want your answer right away! So here it is.
<span>Given <span>f (x) = 3x + 2</span> and <span>g(x) = 4 – 5x</span>, find <span>(f + g)(x), (f – g)(x), (f × g)(x)</span>, and <span>(f / g)(x)</span>.</span>
To find the answers, all I have to do is apply the operations (plus, minus, times, and divide) that they tell me to, in the order that they tell me to.
(f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
<span>\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}<span><span>(<span><span>g</span><span>f</span><span></span></span>)</span>(x)=<span><span><span>g(x)</span></span><span><span>f(x)</span></span><span></span></span></span></span><span>= \small{\dfrac{3x+2}{4-5x}}<span>=<span><span><span>4−5x</span></span><span><span>3x+2</span></span><span></span></span></span></span>
My answer is the neat listing of each of my results, clearly labelled as to which is which.
( f + g ) (x) = –2x + 6
( f – g ) (x) = 8x – 2
( f × g ) (x) = –15x2 + 2x + 8
<span>\mathbf{\color{purple}{ \left(\small{\dfrac{\mathit{f}}{\mathit{g}}}\right)(\mathit{x}) = \small{\dfrac{3\mathit{x} + 2}{4 - 5\mathit{x}}} }}<span><span>(<span><span>g</span><span>f</span><span></span></span>)</span>(x)=<span><span><span>4−5x</span></span><span><span>3x+2</span></span><span>
Hope I helped! :) If I did not help that's okay.
-Duolingo
</span></span></span></span>
Answer:
d. parabola, 0°
Step-by-step explanation:
y² + 8x - 0
y² = -8x
Where x = cos t , y = sin t
Sin² t = -8 Cos t
1 - Cos² t = -8 Cos t
- Cos² t + 8 Cos t + 1 = 0
t = 2лπ ± (3 + √10) , л∈Z
Angle of rotation