To find the equation of a line knowing two points it passes through, we must first find the slope and then substitute the x and y values to figure out the y intercept.
First thing is to find the slope using the formula m = Δy ÷ Δx
m = 5 - (-2) ÷ 4 - (-5)
Now we simplify
m = 7 ÷ 9
Our equation so far is y = 7/9x + b. Now we can substitute the values of x and y from a point to figure out the answer. The equation here uses the point (4,5)
5 = 7/9 · 4 + b
Get b on one side
5 - 28/9 = b
Simplify
b = 1 + 8/9
That makes the equation of the line y = 7/9x + (1 + 8/9)
Answer:

Step-by-step explanation:
![f(x)=4\sqrt{2x^3-1}=4\left(2x^3-1\right)^\frac{1}{2}\\\\f'(x)=4\cdot\dfrac{1}{2}(2x^3-1)^{-\frac{1}{2}}\cdot3\cdot2x^2=\dfrac{12x^2}{(2x^3-1)^\frac{1}{2}}=\dfrac{12x^2}{\sqrt{2x^3-1}}\\\\\text{used}\\\\\sqrt{a}=a^\frac{1}{2}\\\\\bigg[f\left(g(x)\right)\bigg]'=f'(g(x))\cdot g'(x)\\\\\bigg[nf(x)\bigg]'=nf'(x)\\\\(x^n)'=nx^{n-1}](https://tex.z-dn.net/?f=f%28x%29%3D4%5Csqrt%7B2x%5E3-1%7D%3D4%5Cleft%282x%5E3-1%5Cright%29%5E%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5Cf%27%28x%29%3D4%5Ccdot%5Cdfrac%7B1%7D%7B2%7D%282x%5E3-1%29%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%5Ccdot3%5Ccdot2x%5E2%3D%5Cdfrac%7B12x%5E2%7D%7B%282x%5E3-1%29%5E%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Cdfrac%7B12x%5E2%7D%7B%5Csqrt%7B2x%5E3-1%7D%7D%5C%5C%5C%5C%5Ctext%7Bused%7D%5C%5C%5C%5C%5Csqrt%7Ba%7D%3Da%5E%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%5Cbigg%5Bf%5Cleft%28g%28x%29%5Cright%29%5Cbigg%5D%27%3Df%27%28g%28x%29%29%5Ccdot%20g%27%28x%29%5C%5C%5C%5C%5Cbigg%5Bnf%28x%29%5Cbigg%5D%27%3Dnf%27%28x%29%5C%5C%5C%5C%28x%5En%29%27%3Dnx%5E%7Bn-1%7D)
Answer:
the anser and the
Step-by-step explanation:
3+2x
i think that would be the answer smol child