Let the lengths of the sides of the rectangle be x and y. Then A(Area) = xy and 2(x+y)=300. You can use substitution to make one equation that gives A in terms of either x or y instead of both.
2(x+y) = 300
x+y = 150
y = 150-x
A=x(150-x) <--(substitution)
The resulting equation is a quadratic equation that is concave down, so it has an absolute maximum. The x value of this maximum is going to be halfway between the zeroes of the function. The zeroes of the function can be found by setting A equal to 0:
0=x(150-x)
x=0, 150
So halfway between the zeroes is 75. Plug this into the quadratic equation to find the maximum area.
A=75(150-75)
A=75*75
A=5625
So the maximum area that can be enclosed is 5625 square feet.
Answer:
59
Step-by-step explanation:
Let c and b represent the scores of Colin and Brian respectively. Then
c + b = 59. Since brian scored 59 more points than Colin, that means c = 0 and b = 59. Their combined score is 0 + 59 = 59.
It’s not a straight line it’s a v !!