1)
![(-2+\sqrt{-5})^2\implies (-2+\sqrt{-1\cdot 5})^2\implies (-2+\sqrt{-1}\sqrt{5})^2\implies (-2+i\sqrt{5})^2 \\\\\\ (-2+i\sqrt{5})(-2+i\sqrt{5})\implies +4-2i\sqrt{5}-2i\sqrt{5}+(i\sqrt{5})^2 \\\\\\ 4-4i\sqrt{5}+[i^2(\sqrt{5})^2]\implies 4-4i\sqrt{5}+[-1\cdot 5] \\\\\\ 4-4i\sqrt{5}-5\implies -1-4i\sqrt{5}](https://tex.z-dn.net/?f=%28-2%2B%5Csqrt%7B-5%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%5Ccdot%205%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%7D%5Csqrt%7B5%7D%29%5E2%5Cimplies%20%28-2%2Bi%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%20%28-2%2Bi%5Csqrt%7B5%7D%29%28-2%2Bi%5Csqrt%7B5%7D%29%5Cimplies%20%2B4-2i%5Csqrt%7B5%7D-2i%5Csqrt%7B5%7D%2B%28i%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D%2B%5Bi%5E2%28%5Csqrt%7B5%7D%29%5E2%5D%5Cimplies%204-4i%5Csqrt%7B5%7D%2B%5B-1%5Ccdot%205%5D%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D-5%5Cimplies%20-1-4i%5Csqrt%7B5%7D)
3)
let's recall that the conjugate of any pair a + b is simply the same pair with a different sign, namely a - b and the reverse is also true, let's also recall that i² = -1.
![\cfrac{6-7i}{1-2i}\implies \stackrel{\textit{multiplying both sides by the denominator's conjugate}}{\cfrac{6-7i}{1-2i}\cdot \cfrac{1+2i}{1+2i}\implies \cfrac{(6-7i)(1+2i)}{\underset{\textit{difference of squares}}{(1-2i)(1+2i)}}} \\\\\\ \cfrac{(6-7i)(1+2i)}{1^2-(2i)^2}\implies \cfrac{6-12i-7i-14i^2}{1-(2^2i^2)}\implies \cfrac{6-19i-14(-1)}{1-[4(-1)]} \\\\\\ \cfrac{6-19i+14}{1-(-4)}\implies \cfrac{20-19i}{1+4}\implies \cfrac{20-19i}{5}\implies \cfrac{20}{5}-\cfrac{19i}{5}\implies 4-\cfrac{19i}{5}](https://tex.z-dn.net/?f=%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20the%20denominator%27s%20conjugate%7D%7D%7B%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Ccdot%20%5Ccfrac%7B1%2B2i%7D%7B1%2B2i%7D%5Cimplies%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%281-2i%29%281%2B2i%29%7D%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B1%5E2-%282i%29%5E2%7D%5Cimplies%20%5Ccfrac%7B6-12i-7i-14i%5E2%7D%7B1-%282%5E2i%5E2%29%7D%5Cimplies%20%5Ccfrac%7B6-19i-14%28-1%29%7D%7B1-%5B4%28-1%29%5D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B6-19i%2B14%7D%7B1-%28-4%29%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B1%2B4%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B20%7D%7B5%7D-%5Ccfrac%7B19i%7D%7B5%7D%5Cimplies%204-%5Ccfrac%7B19i%7D%7B5%7D)
 
        
                    
             
        
        
        
Let
b---------> <span>the cost of one flower bouquet
</span>v-------->  <span>the cost of one vase.
we know that
2b+2v=12.50-----> </span>Multiplied by -1------------->-2b-2v=-12.50
8b+2v=29---------------------------------------------> 8b+2v=29
           I add the two equations                    ------------------------
                                                                        6b=16.50
b=2.75
2*2.75+2*v=12.50---------------> v=(12.50-5.5)/2---------> v=3.5
the answer is
the cost of one flower bouquet is $2.75
the cost of one vase is $3.5
        
             
        
        
        
Answer:
20
Step-by-step explanation:
x/2+15=25
x/2=10
x=20
Please mark as Brainliest! :)
Have a nice day.
 
        
                    
             
        
        
        
The  IUPAC name for a binary covalent compound lack prefixes such as mono, di, tri tetra etc.
A binary compound is a compound that is composed of only two elements. Many binary compounds could be made up of a metal and a nonmetal or even two nonmetals as the case may be. Examples of binary compounds include; SO2, NaH, K2S etc.
We must note that a binary covalent compound uses Roman numerals to indicate the oxidation state of the central atom in the compound. For instance, SO2 is called Sulfur IV oxide.
Hence, the  IUPAC name for a binary covalent compound lack prefixes such as mono, di, tri tetra etc.
Lear more about IUPAC: brainly.com/question/11587934