1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
8

Whats the value of the expression below 36÷(

mula1" title="\frac{2^{5} }{8}" alt="\frac{2^{5} }{8}" align="absmiddle" class="latex-formula">)+7x(3+11)?
Mathematics
1 answer:
JulijaS [17]3 years ago
4 0
The answer is what that guys said





(Also what grade is this?)
You might be interested in
Una torre de 28.2 m de altura esta situada a la orilla de un rio, desde lo alto del edificio el ángulo de depresión a la orilla
Svet_ta [14]

Answer:

El ancho del río es 59.9 metros.

Step-by-step explanation:

El ancho del río lo podemos calcular con la siguiente relación trigonométrica asumiendo que la torre forma un triángulo rectángulo con el río:

tan(\theta) = \frac{CO}{CA}

En donde:

CA: es el cateto adyacente = Altura de la torre = 28.2 m

CO: es el cateto opuesto = ancho del río =?

θ: es el ángulo adyacente a CA

Dado que el ángulo de depresión (25.2°) está ubicado fuera de la parte superior de la hipotenusa del triángulo que forma la torre con la orilla opuesta del río, debemos calcular el ángulo interno (θ) como sigue:

\theta = (90 - 25.2)^{\circ} = 64.8 ^{\circ}

Ahora, el ancho del río es:

CO = tan(\alpha)*CA = tan(64.8)*28.2 = 59.9 m

Por lo tanto, el ancho del río es 59.9 metros.

Espero que te sea de utilidad!                  

4 0
2 years ago
Flip a coin 10 times and record the observed number of heads and tails. For example, with 10 flips one might get 6 heads and 4 t
zepelin [54]

Answer:

The greater the sample size the better is the estimation. A large sample leads to a more accurate result.

Step-by-step explanation:

Consider the table representing the number of heads and tails for all the number of tosses:

Number of tosses    n (HEADS)        n (TAILS)            Ratio

            10                         3                      7                    3 : 7

           30                         14                    16                   7 : 8

          100                        60                   40                  3 : 2

Compute probability of heads for the tosses as follows:

  • n = 10 tosses

        P(\text{HEADS})=\frac{3}{10}=0.30

The probability of heads in case of 10 tosses of a coin is -0.20 away from 50/50.

  • n = 30 tosses

        P(\text{HEADS})=\frac{14}{30}=0.467

The probability of heads in case of 30 tosses of a coin is -0.033 away from 50/50.

  • n = 100 tosses

        P(\text{HEADS})=\frac{60}{100}=0.60

The probability of heads in case of 100 tosses of a coin is 0.10 away from 50/50.

As it can be seen from the above explanation, that as the sample size is increasing the distance between the expected and observed proportion is decreasing.

This happens because, the greater the sample size the better is the estimation. A large sample leads to a more accurate result.

5 0
2 years ago
Find the measure or the missing angle, please​
ExtremeBDS [4]
IK its an obtuse angleeee if that helps
3 0
3 years ago
Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in t
Tresset [83]

Answer: The volume of largest rectangular box is 4.5 units.

Step-by-step explanation:

Since we have given that

Volume = xyz

with subject to x+2y+3z=9

So, let z=\dfrac{9-x-2y}{3}

So, Volume becomes,

V=xyz\\\\V=xy(\dfrac{9-x-2y}{3})\\\\V=\dfrac{9xy-x^2y-2xy^2}{3}

Partially derivative wrt x and y we get that

9-2x-2y=0\implies 2x+2y=9\\\\and\\\\9-x-4y=0\implies x+4y=9

By solving these two equations, we get that

x=3,y=\dfrac{3}{2}

So, z=\dfrac{9-x-2y}{3}=\dfrac{9-3-3}{3}=\dfrac{3}{3}=1

So, Volume of largest rectangular box would be

xyz=3\times \dfrac{3}{2}\times 1=\dfrac{9}{2}=4.5

Hence, the volume of largest rectangular box is 4.5 units.

4 0
3 years ago
What is the slope of the line determined by the equation -1/2x+3/4y=0
kvasek [131]

Answer:

The slope is 2/3

Step-by-step explanation:

-1/2x+3/4y=0

To find the slope, we need to get the equation in the form y= mx+b

Add 1/2x to each side

-1/2x+ 1/2 x+3/4y=0+1/2x

3/4 y = 1/2x

Multiply  by 4/3 to isolate y

4/3 * 3/4 y = 4/3 * 1/2 x

y = 2/3 x

The slope is 2/3 and the y intercept is 0

7 0
3 years ago
Other questions:
  • Order the numbers from least to greatest.
    9·1 answer
  • The ordered pairs (1, 81), (2, 100), (3, 121), (4, 144), and (5, 169) represent a function. What is a rule that represents this
    11·1 answer
  • The quotient of 2 times a number and 8<br><br> a. 16x<br> b. 8x/2<br> c. 2x/8<br> d. x/16
    7·1 answer
  • Help fast please Mario completely covered a square floor using 98.5 ft² of hardwood without any overlap.
    6·1 answer
  • A) (x^2 + 1/2)^2<br><br>using the formula: <br>(a+b)^2= a^2+2ab+b^2​
    14·2 answers
  • Simplify the expression. Justify each step.
    13·1 answer
  • Please answer this and don't do it for the points
    5·1 answer
  • The following temperatures were recorded in Pasadena for a week in April: 87, 85, 80, 78, 83, 86, 90. Determine the interquartil
    12·1 answer
  • Evaluate b<br> -<br> (6)<br> + c where b = 2 and c<br> 7<br> 4
    7·1 answer
  • Which expression is equivalent to 1/4(5x+6)?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!