I think $16,250 tax. If you need explanation comment
Answer:
The upper boundary of the 95% confidence interval for the average unload time is 264.97 minutes
Step-by-step explanation:
We have the standard deviation for the sample, but not for the population, so we use the students t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 35 - 1 = 35
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 34 degrees of freedom(y-axis) and a confidence level of
). So we have T = 2.0322
The margin of error is:
M = T*s = 2.0322*30 = 60.97
The upper end of the interval is the sample mean added to M. So it is 204 + 60.97 = 264.97
The upper boundary of the 95% confidence interval for the average unload time is 264.97 minutes
Answer:
A=πr2
Step-by-step explanation:
area = pie * radius (to the power of 2)
pie = 3.14
radius = middle point till the line of the circle
Answer:
Step-by-step explanation:
If you call "5x-2x^2+1" an "equation," then you must equate 5x-2x^2+1 to 0:
5x-2x^2+1 = 0
This is a quadratic equation. Rearranging the terms in descending order by powers of x, we get:
-2x^2 + 5x + 1 = 0. Here the coefficients are a = -2, b = 5 and c = 1.
Use the quadratic formula to solve for x:
First find the discriminant, b^2 - 4ac: 25 - 4(-2)(1) = 25 + 8 = 33
Because the discriminant is positive, the roots of this quadratic are real and unequal.
-b ± √(discriminant)
Applying the quadratic formula x = --------------------------------
2a
we get:
-5 ± √33 -5 + √33
x = ----------------- = --------------------- and
2(-2) -4
-5 - √33
---------------
-4