We have:
ba + 3ca = -2
Extract common factor "a":
a(b + 3c) = -2
Divide by the term (b + 3c):

Answer:
-1/1 or -1
Step-by-step explanation:
subtract y: 3-4= -1
subtract x: 2-1=1
answer: -1/1
Answer:
Step-by-step explanation:
![x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} \beta \beta \alpha \neq \geq \\ \left \{ {{y=2} \atop {x=2}} \right.](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%5Csqrt%7Bx%7D%20%5Csqrt%5Bn%5D%7Bx%7D%20%5Cfrac%7Bx%7D%7By%7D%20x_%7B123%7D%20%5Cbeta%20%5Cbeta%20%5Calpha%20%5Cneq%20%5Cgeq%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.)
A number (we will call X) times 8 Is 8x
Answer:
Option A:
y = 3*(x - 5)^2 - 4
Step-by-step explanation:
For a quadratic equation:
y = a*x^2 + b*x + c
with the vertex (h, k), we can rewrite the function as:
such that:
h = -b/2*a
y = a*(x - h)^2 + k
Here we have the function:
y = 3*x^2 - 30*x + 71
the x-value of the vertex will be:
h = -(-30)/(2*3) = 30/6 = 5
And k is given by:
k = y(5) = 3*(5)^2 - 30*5 + 71 = -4
Then the vertex is:
(5, - 4)
And we can rewrite the equation in the vertex form as:
y = 3*(x - 5)^2 + (-4)
y = 3*(x - 5)^2 - 4
Then the correct option is A.