Answer:
solution:-We know that for any two finite sets A and B, n(A∪B)=n(A)+n(B)−n(A∩B).
Here, it is given that n(A)=20,n(B)=30 and n(A∪B)=40, therefore,
n(A∪B)=n(A)+n(B)−n(A∩B)
⇒40=20+30−n(A∩B)
⇒40=50−n(A∩B)
⇒n(A∩B)=50−40
⇒n(A∩B)=10
Hence, n(A∩B)=10
Step-by-step explanation:
hope it helps you friend ☺️
Answer:60
Step-by-step explanation:
a=13 b=13 c=10
Perimeter of =a+b+c
perimeter of =13+13+10
Perimeter of =36
S=36 ➗ 2
S=18
Area=√s(s-a)(s-b)(s-c)
Area=√18(18-13)(18-13)(18-10)
Area=√18(5)(5)(8)
Area=√(3600)
Area of =60