Here is the answer With working
Answer:
0.7
Step-by-step explanation:
The answer is <em>0.7</em><em> </em>
Sorry if I'm wrong :(
Answer:
The determinant is 15.
Step-by-step explanation:
You need to calculate the determinant of the given matrix.
1. Subtract column 3 multiplied by 3 from column 1 (C1=C1−(3)C3):
![\left[\begin{array}{ccc}-25&-23&9\\0&3&1\\-5&5&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26-23%269%5C%5C0%263%261%5C%5C-5%265%263%5Cend%7Barray%7D%5Cright%5D)
2. Subtract column 3 multiplied by 3 from column 2 (C2=C2−(3)C3):
![\left[\begin{array}{ccc}-25&-23&9\\0&0&1\\-5&-4&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26-23%269%5C%5C0%260%261%5C%5C-5%26-4%263%5Cend%7Barray%7D%5Cright%5D)
3. Expand along the row 2: (See attached picture).
We get that the answer is 15. The determinant is 15.
Answer:
0.818
Step-by-step explanation:
Since the shipment has a ton of aspirin tablets, we can assume that we pick 13 of them <em>with</em> <em>reposition, </em>because the probability shoudn't change dramatically from the probability of picking without reposition if we do so.
We call D the amount of defective tablets. If we assume that we pick the tablets with reposition, then we obtain that D is a random variable of Binomial distribution with parameters 13 and 0.6 (the probability of picking a defective tablet).
We want D to be at most one. To calculate the probability of that event we add up the probability of D being equal to 0 and the probability of D being equal to one. Since D is binomial, we have
We conclude that

Hence, the shipment will be accepted with probability 0.818
<em>I hope this helps you!</em>